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XBSTRACT

This report contains selected summaries of technical presentations
and demonstrations given at the National Institute of Standards and
Technology (NIST) Geographic Information Systems (GIS) Standards
Laboratory's Technology Integration Workshop held at NIST,
Gaithersburg, Maryland on August 23-24, 1990. The Workshop hosted
over 50 representatives from a wide variety of governmental,
industrial, and academic organizations and generated considerable
interest and discussion among the attendees.

The Technology Integration Working Group, chaired by Mr. Dave
Pendleton, NOAA, was formed within the GIS Lab as a cooperative
technology transfer vehicle to share advances being made in
applying expert systems, object-oriented database technologies,
and GIS to practical problems in spatial data management and
cartographic portrayal. The Workshop focused upon demonstrations
of work-in-progress prototypes and technical discussions of
progress in several on-going projects.

This Workshop as well as other NIST GIS Standards Laboratory
activities are focused on performing cooperative research in order
to integrate existing, emerging, and the anticipatory development
of spatial data and information technology standards. The forum
of government, industry, and academic organizations participating
in the NIST GIS Standards Laboratory is dedicated to achieving this
objective

.





IMTRODUCTIOH

Geographic Information Systems (GIS) , expert systems, and object-
oriented techniques are leading edge technologies. Substantial
research in each technology and the integration of these
technologies is occuring. Such integration efforts have been
limited to just combinations of any two of these technologies.

The integration of all three technologies is being pioneered at
the National Oceanic and Atmospheric Administration (NOAA) Nautical
Charting Research and Development Laboratory (NCRDL) , a component
of the National Ocean Service's Office of Charting and Geodetic
Services. During the past four years, the NCRDL has developed a
series of prototypes for the autonomous generation of navigational
charts from digital databases of chart features. The
demonstrations and presentations were in large part based on the
results of these prototype projects and their supporting hardware
and software packages.

The prototypes were grounded in the airtificial intelligence and
object database technologies to effectively integrate the expert
systems, GIS, and object-oriented programming/data management
approaches. The work is a technological melange; each approach
contributes to the overall solution with no individual approach
capable of complete solutions by itself. The integration of
leading-edge technologies for such applications is required because
conventional methods have proven inadequate for the complexities
of knowledge representation and reasoning aibout spatial entities.

The achievement of autonomous chart generation requires solving
several classical digital cartographic problems, including: (1)
feature generation (collapse and agglomeration) at scale change;
(2) feature label placement without overlapping nearby feature
symbology; (3) spatial conflict detection and resolution between
nearby features at a given scale; (4) decluttering to emphasis
features of special interest; and (5) graphic portrayal for a wide
variety of complex features. Solving basic problems, common to the
digital charting and GIS communities, has been the motivation
behind the demonstrations and techniques discussed at the Workshop.

My thanks and appreciation to all the authors and attendees for
their interest and participation.

Henry Tom
NIST GIS Standards Laboratory
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EXPERT SYSTEM CONCEPTS

by

Christopher E. Dabrowski
Elizabeth N. Fong

This paper provides an overview of the main concepts that underlie

expert systems technology and discusses how this technology can be
applied in practice. The paper is tutorial in nature and is intended for

readers with little or no Imowledge of expert systems. The paper
presents the major classes, or kinds, of expert systems that can be
developed and discusses criteria for selecting candidate tasks for

implementation.



This pap>er provides an overview of the main concepts underlying expert

systems technology and discusses how this technology can be applied in practice.

The overview presented in this paper is intended to be introductory in

nature. The paper first discusses underlying concepts and reviews the computing
methods employed by expert systems. An example of an expert system in operation

is presented. Differences between expert systems and conventional software systems
are summarized. Finally, the subject of interfaces between expert systems and other

software systems is also covered.

The discussion of applications of expert systems technology begins by
presenting the major classes, or kinds, of expert systems. This is followed by a

discussion of criteria for selecting tasks for implementation.

Other aspects of expert system technology not covered in this paper include

the expert system development process and software tools for developing expert

systems. Readers interested in these topics can consult the sources listed at the end
of this report.

1. INTRODUCTION

Recent years have seen a modest boom in the development of expert systems,

both in government and industry. Initially, exp>ert systems were advertized by some
as holding forth the promise of revolutionizing the computer technology. Some
hoped that expert systems could provide computers with a general capability for

intelligent problem solving that could be applied to almost any problem. Such
predictions proved to be too optimistic. As the technology matured, these views
have gradually been corrected. More and more, expert systems are being realized for

what they are: specialized software systems for automating expert problem solving

for specific types of problems.

1.1 Backgroimd

Expert systems originated as part of the field of artificial intelligence.

Artificial intelligence (AJ) can be described as the study of theories and methods for

automating "intelligent" behavior. AI has been a research discipline for over three

decades, with other major subfields in robotics, machine vision, and natural

language understanding.
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Figure 1. Expert Systems and Artificial Intelligence

The first research expert systems were developed in the late 1960s and early

1970s. MYCIN, an experimental system for diagnosis of blood diseases was one of

the first successful demonstrations of the potential of expert systems. The early

1980s saw the first practical applications erf expert systems in real-world

environments. Expert systems have been developed to do medical diagnosis,

determine causes of machine failure, to perform planning and scheduling activities,

and to configure computer systems.

1.2 What Are Expert Systems

An exp>ert system is a computer program for solving difficult problems that

are normally handled by human experts. An expert system stores knowledge about
how a particular type of problem is solved. When an example of the problem is

presented, the expert system uses the stored knowledge to find a solution.

Expert system programs differ from conventional computer programs.

Conventional programs are designed to solve problems in which adl the relevant

factors can be completely analyzed. For such problems, algorithms either exist or

can be developed that perform a complete analysis of each aspect of the problem and
arrive at a correct solution. Such algorithms can be encoded using a conventional

programming language.
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In contrast, expert systems are aimed at problems diat cannot always be solved
using an algorithm. These problems are often characterized by irregular structure,

incomplete information, and considerable complexity. The solutions may be
uncertain and represent 'best guesses" that must be inferred on the basis of available

evidence.

1.3 The Importance of Expertise

Expert systems are specifically designed to maintain and use human problem
solving expertise.

Expertise can be considered knowledge about solving a special problem or a

well-developed skill at performing a particular task. General expertise within a

domain of Imowledge can be partly acquired through formal training or education.

However, in many domains of endeavor, extensive experience is needed to achieve

a high level of performance in solving specific problems. Typically, this experience

is possessed by only a few humans, who are referred to as domain experts . Much of

the problem solving ability of domain experts is based on heuristics.

A heuristic can be regarded as a rule of thumb, fact, or even procedure that

can be used to solve some problem but is not guaranteed to do so. It may fail.

Heuristics may be regarded as simplifications of a complete formal description of

some real-world system. For example, it is conceivable that a weather system can be
described by a complex mathematical model. In principle, such a model could also

be used to analyze atmospheric conditions and accurately predict the weather.

However, in practice, complete models are often difficult to develop, due to lack of

necessary information about the problem and its inherent complexity. Instead of

using this model to predict rain, a simple heuristic can be substituted.
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Possible Heuristic?

IF The Temperature > 32 F

And The Humidity Is Over 96%
It Will Probably Rain

Figure 2. An Example of a Heuristic

The rain heuristic, while it will work most of the time, can also fail.

However, the heuristic may be necessary if using a complex, formal model is not
practical, or p>ossible. In the real world, there are many imp>ortant problems that

cannot be solved using formally defined procedures. For these problems, using
human expertise based on heuristic knowledge is necessary.

Although they can and do incorporate different kinds of programming
methods, expert systems specialize in encoding and using heuristic knowledge.
Expert systems can be thought of as software systems for 1) maintaining heuristic

knowledge about certain kinds of problems, and 2) applying this knowledge to solve

specific problems, usually using some form of automated inference. The exp>ert

system's problem solving ability is' a function of the quality and quantity of

knowledge it internally represents and uses. To internally represent knowledge and
carry out inference, expert systems utilize specialized programming techniques

developed through AI research.

2.0 THE ELEMENTS OF AN EXPERT SYSTEM

Expert systems store expert knowledge and apply it "on demand" to solve

problems. Information about problems is provided to the expert system by human
users, known as end users, via a computer terminal (the user of an expert system

may also be another computer program or mechanical device as will be described

below). The expert system uses inference procedures to apply its stored knowledge to

facts describing problems. The systematic application of inference produces a

solution that is displayed at the terminal.
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The operation of an expert system is based on the interaction of three

components. The knowledge base stores knowledge about how to solve problems.
The inference procedures are applied by a software component of the expert system,
called the inference engine . Communications between the expert system and end
users are handled by an end user interface .

Figure 3 provides a graphical illustration that summarizes the architecture of

the expert system.

END
USER

Expert

System

frobtem
Description

Solutions

USER INTERFACE

mmProblem J
|
Solutions '

mmSescriptionlf 1

INFERENCE ENGINE

Knowledge A
(Rules)

KNOWLEDGE BASE

Figure 3. The Architecture of an Expert System

Each of the major architectural components of the expert system can be
further elaborated.

2.1 The Knowledge Base

Knowledge is stored in the knowledge base using symbols and data structures

to represent important concepts. The most common form of representing

knowledge is the IF-THEN rule, or production rule, shown below.
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Rule 1

IF Days_Since_Rain in ?area >= 8
& Humidity in ?area < 20%

THEN Conditions in ?area are DRY

Figure 4. A Typical Knowledge Base Rule

This rule expresses knowledge about conditions under which wildfires are likely.

The symbol "?area" represents a variable that can take the value of a specific

geographic area. The example will be elaborated below.

A knowledge base can contain many rules. Knowledge expressed in rule

form is said to be stated declaratively. Declarative knowledge is knowledge that is

stated explicitly. Declarative knowledge is intended to be accessible to persons, such
as domain experts, who may need to see it. The ability to make its knowledge
accessible and understandable is one of the most imp)ortant services provided by an
expert system.

2.2 The Inference Engine

The inference engine is a computer program that contains a set of inference

procedures for applying knowledge stored in the knowledge base to a set of facts

about a problem. These inference procedures are designed to produce new
information leading to a solution.

An inference engine works by comparing rules against known facts to

determine if new facts can be inferred. The conditions in the premise, or IF part, of a

production rule are compared against existing known facts. If these conditions are

satisfied, the facts in the conclusion, or THEN part, can be inferred. Figure 5 below
illustrates how inference takes place.

7



Figure 5. Rules and Inference

In an expert system, inference is said to take place through symbolic
reasoning . An inference engine reasons symbolically by manipulating symbols that

represent concepts. Symbolic reasoning is intended to emulate the way humar\s
might manipulate concepts and ideas when reasoning. Many methods of symbolic
reasoning are possible. The example presented above is a simple case. Symbolic
reasoning is one way in which expert systems can be distinguished from
conventional programs.

2.3 Inference Engines and Rule Chaining

During an individual problem solving session, or consultation, a large

number of rules may be examined. The inference engine uses the fact or facts

concluded by one rule to satisfy conditions of other rules. In this way, many
different rules can be Imked or chained. Figure 6 provides a graphic illustration of

how rule chaining works.
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Figure 6. Inference Engines "Chain" Rules

Inference engines chain rules using two strategies. In forward chaining.

known facts are compared to rule conditions to determine what rules can be
satisfied. Figure 6 shows a simple example of forward chaining. The forward
chaining process repeats until a problem solution is reached, or until no new facts

can be concluded. Forward chaining is said to proceed in a forward direction because
a fact is first inferred by one rule and then compared against conditions of other

rules in the knowledge base.

Backw^ard chaining works the opposite way. In backward chaining, the

inference engine first selects a fact that it intends to infer. Initially, facts representing

solutions to a problem are selected. Next, the inference engine finds rules that infer

the desired fact and attempts to satisfy their conditions. The conditions of these

rules may require facts that are unknown to the inference engine. These unknown
facts may be concluded by different rules that must then be examined and so forth.

In backward chaining, rules are chained in backward direction, proceeding

from the unsatisfied conditions of one rule to rules that conclude the necessary facts.

Like forward chaining, backward chaining can involve many rules. Inference

engines employ control strategies to guide the order by which rules are examined
and inferences made. For more detailed explanations of backward and foiw^ard

chaining, see [RICH91] or [WINS84].
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2.4 External Interfaces

Expert systems communicate with human users via an end user interface.

The end user interface is used to obtain information about the problem from the

end user and to display solutions.

To do this, an interface must display questions at a terminal and provide
prompts or menus to allow end users to answer. The solutions may be displayed
using text. An expert system for geographic information systems (GIS) applications

might use computerized maps, if appropriate.

The user interface must also provide explanations of the expert system's

actions. During a consultation, the user may wish to know why questions are being
asked or why certain facts were concluded. At the end of a consultation, the user

may request explanations of how a solution was reached.

For many practical applications, an expert system must interface, and
exchange data with other software systems. This topic will be discussed further in

section 4.

3. AN EXAMPLE OF AN EXPERT SYSTEM

This section provides an idealized example of how an expert system can be
employed in practice. The example is based on a typical GIS application: use of

geographic information to determine the likelihood of forest fires.

3.1 A Sample Knowledge Base

Let us assume a simplified knowledge base that has two rules, shown in

figure 7 below. Rule 1 is the same rule shown in figure 4. Rule 2 concludes that a

forest fire, called a "wild fire" is likely if 1) lightning strikes have been seen in the

area and 2) conditions in the area are dry.

10



Rule 1

IF Days_Since_Rain in ?area >= 8
& Humidity in ?area < 20%

THEN Conditions In ?area are DRY

Rule 2
IF Llghtning_Seen in ?area

& Conditions In ?area are DRY
THEN Wildfire in ?area LIKELY

Figure 7. A Small Knowledge Base of Rules

3.2 A Sample Problem Solving Session

The expert system is activated by an end user, perhaps a forest ranger. The
ranger wishes to know where within a park a "wildfire" likely to occur. For the

purposes of this example, assume the park is divided into areas. Also assume that

the ranger is concerned with only 2 particular areas: AREA_1 and AREA_2. The
ranger has access to information about weather conditions in these areas, including

the number of days since the last rain, the humidity, and the occurrence of lightning

strikes. The ranger provides these facts to the expert system via the end user

interface.

In this example, the inference engine attempts to provide an answer to the

ranger's problem using forward chaining. The process begins by comparing the

known facts provided by the ranger against the conditions of rules.

1. The known facts are compared to the conditions of Rule 1. The facts

Days_Since_Rain = 14 and Humidity = 5% for AREA_1 satisfy the

conditions of Rule 1. The fact "Conditions in AREA_1 are DRY" can be

inferred.

2. For AREA_2, The facts Days_Sirtce_Ram = 6 and Humidity for

AREA_2 = 60% do not satisfy the conditions of Rule 1. Therefore, the

inference engine cannot condude that conditions are dry in AREA_2.

3. The known facts are compared against the conditions of Rule 2.

Again, Rule 2 can be satisfied for AREA_1. Conditions in AREA_1 are

11



DRY was inferred by Rule 1. Lightning_Strikes_Seen in AREA_1 is a

known fact. Therefore, Wildfire in AREA_1 can be concluded.

4. The ranger receives an answer that a wildfire is likely in AREA_1.

The process is summarized in figure 8 below.

Known Facts

Day8_Slnc«_Raln In AREA_1 s 14

Oays_Sinc«_Raln in AREA_2 s 6

HumidHy In AREA_t s 5%
Humidity In AREA 2 = 60%

Lightning Strikas^Sean In AREA_1

Knowledge Base

Rula -1'^

IF Oaya_Sinca_Rain fa) ?araa >s 6
A Humidity in ?araa < 20%

THEN Conditions in Taraa mr» DRY

Rula 2

IF LightningjSaan in ?araai

& Conditions In ?araa ara DRY
THEN Wildfira In ?araa UKELY

Figure 8. A Simple Example: Predicting Fires

In backward chaining, the inference engine would first find a rule that

concludes a solution to the problem; e.g., there is a likelihood of wildfire in some
area. Therefore, Rule 2 would be tried first. The conditions of Rule 2 are initially

unsatisfied because the fact stating that the area is dry is unknown. The inference

engine would then have to test Rule 1 to conclude which area was dry.

This simple example is meant to give the reader some idea of how an expert

system works. Actual expert systems may have hundreds or even thousands of

rules.
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3.3 Real-World Expert Systems and Problem Complexity

The difficulty of many real-world problems tackled by expert systems can
often be described in terms of: (1) the large number of facts that can p)otentially be
examined, (2) the many different solutions that can be developed, or both.

Examining the consequences of each fact or combination of facts and investigating

every possible solution could result in following many alternative lines of

reasoning. The systematic examination of different lines of reasoning in an effort to

find a solution can be viewed as a search process. For very large problems,
exhaustively searching every possibility nught be impractical. Solving such
problems thus depends on reducing their size.

In many cases, the expert limits the size of the problem by focusing on a small

subset of facts and a few relevant lines of reasoning. This allows the expert's

knowledge to be captured in a succinct set of rules. The resulting "expert systems"

are small and the knowledge they contain can be expressed in decision tables.

i

For larger, more complex problems, finding a solution requires examining
more information and/or considering a much larger number of solutions. To
reduce the size of a problem, an expert system may have to select only a few lines of

reasoning to pursue from a much larger number that may be available. Heuristics

provided by the expert must be used to select those lines of reasoning with the best

chance of producing a solution.

The use of heuristics to limit search is known as heuristic search . One way
heuristics can reduce search is to shift the focus of the problem-solving effort on the

most important evidence or the most likely solutions. In the example above, the

domain expert may provide the knowledge that the machine is more likely to

overheat tl^n it is for the cooling system to fail. Hence, the expert system could

reduce the amount of work it has to do by trying Rule 2 first. Other lines of

reasoning would be tried if it was found that the machine had not overheated. In a

larger expert system, heuristic search could be an important factor. For more
information about search in AI, see [FOX90], [RICH91], or [WINS84].

3.4 How Expert Systems Explain Their Actions

It is helpful for an expert system that solves a complex problem to be able to

explain its actions. For instance, in the example discussed in section 3.2, the end
user may be interested in an explanation of the line of reasoning used to determine

that "wildfire" is likely in AREA_1. Figure 9 shows how an expert system might

display its line of reasoning.

iSuch systems are often distinguished from expert systems because of their

simplicity and small size. Some specialists prefer to call these systems knowledge

systems .
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WtLDRRE In AREA 1 IS LtKELY

INFERRED BY RULE 1 BECAUSE

LIghtning_8trik»s S*«n in AREA 1

WAS A KNOWN FACT

Conditions in AREA.! ARE DRY
WAS INFERRED

Conditions in AREA.1 ARE DRY

INFERRED BY RULE 2 BECAUSE

Dsys SincsJRsln lii AREA 1« 14
A
Humidity in AREA^I m 5%
WERE KNOWN FACTS

Figure 9. Explain Why Wildfire Is Likely in Area 1.

An expert system keeps track of what facts have been inferred and which
rules were used to make the inferences. As the figure shows, explanation of how
facts are concluded is achieved by "playing back" fiie sequence of inferences that

were made.

3.5 Differences Between Expert Systems and Conventional Computer
Programs

Expert system programs differ from conventional software in four important
ways. First, knowledge is separated from program control; e.g., the knowledge base
and inference engine are separate. Second, knowledge is represented declaratively.

Third, expert systems perform computation through symbolic reasoning. And
finally, expert systems can explain ^eir actions, ^ch of these distinguishing

capabilities can be elaborated.

o Separation of Knowledge From Program Control

In conventional programs, written in languages such as FORTRAN or C,

knowledge about a problem domain is contained in programming language
statements. As such, knowledge about how a problem is solved is combined
directly with specifications for control of program execution. In an expert

system, knowledge is represented in data structures, such as production rules,

which are stored in a knowledge base. The knowledge base is separate from
the inference engine which controls program execution.

14



o Declarative Representation of Knowledge

Knowledge represented using symbols and data structures, such as rules, is

explicit in the sense that it states what knowledge exists, not how the

knowledge is applied. By representing knowledge dedaratively, the

knowledge of an expert system can be more readily understood and accessed

by individuals who are not specialists in programming languages.

o Symbolic Reasoning and Inference

Symbolic reasoning refers to the manipulation of symbols and data structures

by the inference engine. Symbolic reasoning is intended to emulate the way
humans might manipulate concepts when solving a problem. In the

simplest case, this may involve testing a rule to determine if its condition

part is satisfied and then adding the conclusion of the rule to a list of known
facts. Expert systems can also be characterized by use of defined inference

strategies.

o Explanation of Actions

Declarative knowledge and symbolic reasoning support the ability of the

expert system to explain its actions. An expert system explams its actions by
showing the chain of reasoning created by the rules used to solve a problem.

The ability to represent and reason about uncertainty is a feature also

supported by some expert systems.

4.0 EXPERT SYSTEMS AND OTHER SOFTWARE SYSTEMS

As more and more corporate information resources become computerized
and as the demand for expert systems increases, the necessity and importance of

expert system interfaces has also increased. Many problem solving tasks p>erformed

by expert systems require communication, and exchange of data, with other software

systems. This section briefly discusses this important subject.

4.1 Expert System Interfaces to Other Software

Expert systems may require a variety of external interfaces. A few are

summarized below.

o Interfaces to Database Management Systems

Expert systems often require access to data residing in a DBMS or GIS. For

instance, in the example above, information about conditions and local

15



weather can be conveniently stored in a database. Instead of obtaining this

information from a ranger, the expert system might initiate a call to a DBMS.

Interfaces to Procedural Computer Programs

While expert systems carry out inference procedures well, they are not as
good at performing other computations. For instance, inference procedures
are inefficient for extensive numerical calculations or iterative processing. If

such computations are required, the expert system should initiate calls to

external software modules written in languages such as C or Fortran. An
expert system that uses GIS analysis functions must operate in this manner.

Graphics Systems and Packages

Interfaces to graphics software packages may be necessary for many
applications of expert systems. Graphics packages are integral aspects not only
of GIS, but also of engineering software such as computer aided design (CAD)
systems.

Figure 10 depicts various types of interfaces an expert system may have.

Figure 10. Expert System Interfaces



4.2 Embedded Expert Systems

It is possible that conventional software systems, including GIS applications,

may initiate calls to expert systems to perform special purp)ose problem solving.

Increasingly, expert systems are being developed and configured as components in

larger software applications. Such expert systems are referred to as embedded expert

systems . The primary user of an embedded expert system is another software
application. Figure 11 below illustrates this concept.

Figure 11. Embedded Expert Systems

5. APPLICATIONS OF EXPERT SYSTEMS

Expert systems are specialized software systems that emulate human
reasoning activity. But, exactly what kinds of applications can expert systems best be

used for? The next two sections (secs. 5 and 6) will help answer this question.

Expert systems employ two broad categories of problem solving strategies.

They are solution selection and solution construction. These strategies provide a

basis for describing classes of expert system applications.

17



5.1 Expert Systems That Select Solations

The most basic strategy employed by expert systems is to select solutions from
among a list of possible outcomes. Election systems work by essentially matching
problem descriptions; e.g., matching facts describing the circumstances of a problem
to individual solutions.

More complex problems require use of abstract problem characterizations as

intermediate steps in finding a solution. The expert system examines supporting
evidence in an attempt to characterize, or classify, a problem according to abstracted

descriptions of problem types. The characterizations are then used to infer

solutions. The abstract characterizations and rules of inference are based on
heuristics obtained from domain experts. This method, known as heuristic

classification, summarizes the way many expert systems solve problems [CLAN85].

Several kinds of expert system applications that select solutions using
heuristic classification may be identified. A few are listed below.

o Recognition of System Malfunctions

Determining causes of malfunctions is a generic task commonly performed by
expert systems. Examples indude medicS diagnosis and troubleshooting

equipment failure.

o Evaluation of Applications for Benefits

These systems determine eligibility for credit applications, insurance claims,

and pensions. There are several examples of such systems implemented on
microcomputers. See [HARM88].

o Selection of Items From a Catalog

In many organizations, expert systems are used to select goods or services

from a larger list of possibilities to meet specific user needs [POTT90],
[FONG88], [RADA90].

o Monitoring and Control

System monitoring, closely related to diagnosis, compares actual system
behavior to a model of preferred behavior, operating on a continuous basis

[TSUD90].

Other kinds of expert systems that select solutions may be identified. See also

[HAYE83], [CLAN85]. Selection systems vary in complexity, from simple product
selection systems to complex diagnostic systems.

18



5.2 Expert Systems That Construct Solutions

A second method employed by expert systems is to construct solutions from
individual components or pieces. This method is used to perform configuration,

design, planning, or scheduling tasks.

Expert systems that construct solutions must first select individual

components (or have them provided in the problem description). Components
may have complex relationships, many of which reoccur in generic patterns.

Similarly, constraints may be placed on relationships. The knowledge base may
contain generalized rules that specify allowable arrangements of components or that

express constraints.

The problem solving strategy of some moderate to large construction type

systems requires consideration of many alternative component combinations. For

larger configuration problems, the number of potential combinations can exceed the

computational resources of the largest computer systems. Many construction expert

systems find solutions by employing heuristic search strategies to reduce the

number of combinations that need to be examined (See sec. 3.3). Examples of

construction tasks are listed below.

o Design

Expert systems have been developed to perform a number of design tasks

including designing maps [ROBI85], [NICK86], configuring hardware
components of computer systems to satisfy customer requirements [MCDE82],
[MCDE84], physical database design [DAB^8], and other areas [LIEB90].

o Planning and Scheduling

The goal of expert systems that plan and schedule is to find an acceptable

arrangement of events so as to minimize use of time and resources. A typical

example is finding optimal travel routes for delivery trucks [ROTH90].

Most, though not all, construction-oriented tasks require extensive

processing. Small scale configuration tasks can be largely procedural and often do
not require extensive computing to perform.

6.0 SELECTING APPLICATIONS OF EXPERT SYSTEMS

Not all tasks can be implemented as expert systems. Some tasks rely on

knowledge that cannot be easily captured in expert systems, while other tasks are

better implemented using alternative computing methods.
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This section discusses some criteria for selecting applications of expert system
technology and examines where expert systems can be advantageously deployed.
Characteristics of tasks that are appropriate for implementation as expert systems are

presented. Tasks that are not appropriate for development as expert systems are also

discussed.

6.1 Deploying Expert Systems to Improve Productivity

Determining how and where to use expert systems is based on analyzing the

information processing needs of an organization. Identification of places to apply
expert systems technology is based on finding critical points within an organization

where automation of expertise can lead to improvements in operational efficiency.

o Alleviating "Knowledge Bottlenecks”

ICnowledge bottlenecks" occur when existing expertise cannot be brought to

bear on regularly occurring problems that require expertise to solve. That is,

"knowledge bottlenecks" happen when the number of experts is too small for

the number of problems that need to be solved. Or, experts may be
geographically distant from the site of the problem. The example in section 3

illustrates su^ a ’bottleneck."

o Providing a Means for Consistent Decision Making

By deploying expert systems throughout an organization, expertise about
narrowly focused problems can be disseminated. This ensures consistent

implementation of policy and procedures.

o Automating Repetitive Tasks That Are Difficult for Humans

In many operational situations, certain tasks are performed by continuous

repetition over long periods. One example is monitoring computer systems
for illegal access attempts [TSUD90]. Suc^ tasks require a certcun level of

expertise, but aire performed poorly by p>eople because they require constant

attention. In these situations, expert systems have proved useful.

o Freeing Experts for More Important Tasks

An expert system can perform many relatively mundane tasks normally

handled by an expert. This allows the expert to devote time to other work
that may also be important to the organization.
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6.2 Characteristics of Appropriate Problems

In determining whether or not expert system technology should be used, it is

important to examine the characteristics of the problem to be solved. In practice,

certain problems have proven more amenable for automation using expert systems
methods than others. These problems generally possess certain characteristics.

o Finding Solutions to Problems Requires Expertise

The level of difficulty of the task must be high enough to pose some barrier to

individuals who wish to become proficient in solving the problem. Finding
solutions to problems depends on the use of expertise accumulated through
training and/or practice.

o Problem Solving in the Domain Is Uncertain

Information about problem solving methods may be uncertain, imprecise,

and incomplete. Uncertainty is a common characteristic of expert system
domains, and expert systems provide methods to express different levels of

confidence. A typical problem may have more than one solution, each of

which has a degree of associated uncertainty.

o The Problem Cannot Be Solved Using Established Computing Methods

Analysis of the problem may show that it can be completely solved by
mathematical techniques, operation research methods, or other established

computing methods. In this case, expert system technology should not be
used. Problem solving activity that is based on weU-defined procedures, or

involves only simple decision making, can often be more easily automated
using conventional softw^are methods.

6.3 Characteristics of Knowledge Used to Solve the Problem

Closely related to the characteristics of the problem to be solved, are the

characteristics of the knowledge used to perform the problem solving task. These
characteristics may be summarized as follows.

o The Knowledge Necessary to Solve the Problem Depends on Heuristics

Not all the knowledge that goes into an expert system is heuristic. But often,

a large part of it is. An exception to this maybe applications such as claims

benefits processing where most of the knowledge is legal or procedural and is

not seen as being heuristic in nature.
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o The Knowledge Can Be Stated or Represented Declaratively

It must be possible to clearly state impK)rtant concepts, rules, and procedures
used to solve problems in the domain of interest. It must also be possible to

express this information symbolically in data structures.

o The Problem Solving Process Is Based on Reasoning and Deduction

As discussed earlier, expert systems are specifically designed to represent and
reason with heuristic knowledge. In most cases, heuristics should be
representable in rule for^i.

6.4 The Scope and Size of the Problem

In practice, the size of completed expert systems is often very large, consisting

of hundreds, or thousands, of rules. If the task is too broad, the development effort

may take an inordinate amount of time, or even be impossible. Some guidelines on
the scope and size of the problem are listed below.

o The Task Must Be Narrowly Focused

The problem to be solved must be restricted and specific. An expert system
should be dedicated to a limited domain. For example, an expert system to

diagnose factory machine failures may be dedicated to problems for a very
specific kind of machine. Or, it may diagnose malfunctions of only very
specific parts.

o The Task Should Be Decomposable

A universal system development strategy is to decompose a system into

components and develop each component separately. Tasks that lend

themselves to the "divide and conquer" strategy can be implemented as

expert systems in pieces, or phases. This greatly eases system development.

In general, selecting problems having sufficiently narrow scope is critical to

successful development of expert systems.

6.5 Areas to Avoid

Several categories of problem solving activity have been identified as being

inappropriate for expert system methods. These are listed below.
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o Tasks Based on Common Sense or Real-World Knowledge

The amount of knowledge about the real world is so vast as to be virtually

impossible to implement in a computer application. Representation of

common sense knowledge is a topic of AI research.

o Tasks Requiring Perceptual Knowledge

Problems that require actually seeing or touching information about the

problem are beyond the scope of expert systems.

o Creativity or Inventiveness

As stated above, expert systems are under a closed-world assumption and
cannot be expected to engage in creative activity in the same sense as humans
do.

Each of these categories involves processes that are too poorly understood to

be implemented using current AI programming methods.

6.6 The Source of Expertise

To develop an expert system, an established source of expertise must exist.

Without an existing base of expertise to solve the problem, expert system technology
cannot be applied. The necessary expertise is possessed by a recognized human
expert or is found in a written source, such as a manual. Sometimes expertise is

obtained from both sources.

o The Core of the Problem Solving Knowledge Must Be Stable

While specific aspects of the problem solving knowledge might change over

time, the underlying concept and basic problem solving method must remain
stable. It is also important to emphasize that expert systems apply only
existing expertise to solve problems. They do not create or invent expertise.

o There Must Be Substantial Agreement on Solutions Between Experts

If several experts exist and disagree on the solutions for the most important

or common problems encountered, this may indicate that the problem
solving knowledge is unstable.

o The Knowledge Provided by the Source of Expertise Must Be Qear

The problem solving method and the underlying knowledge must be
understandable to developers.
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o The Domain Expert Must Be Able to Allocate Time

Too often the amount of time required to develop an expert system is

underestimated. In most cases, it is necessary to have a domain expert

assigned to a project for the length of its duration.

The availability of the source of expertise depends greatly upon management
decisions about allocation of resources in an organization.

6.7 Summary and Further Sources on Selecting Expert Systems Applications

The discussion contained in this section can be summarized as a list of

questions to consider when assessing a candidate task for development as an expert
system.

o Can the task be clearly defined? Is the task narrow in focus?

o Does the task fall into one of the expert system categories described in section

5?

o Is there a benefit to the organization in automating the task? How will it help
improve productivity?

o Does a domain expert exist who can perform the task? Can the domain expert
clearly state the knowledge necessary to solve the problem? (If not, an expert
system may not be possible.)

o Can the task be expressed in a straightforward algorithm that can be encoded
using established computing methods? (If so, an expert system may not be
necessary.)

o Does the task depend on heuristic knowledge? Does it require reasoning and
inference?

o Does the task require skills that are difficult to automate? (If so, an expert

system may not be possible.)

o Is the task small enough to automate? Is it decomposable?

Further references that deal with the subject of selecting expert system

appHcations include [BECK90], [CUPE88], [HARM88], [LAUF90], [MOCK90],
[MURD90], and [PRER89].
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7.0 LIMITATIONS OF EXPERT SYSTEM TECHNOLOGY

The examples presented in this paper and previous discussions have
indicated that expert systems have limitations. Some of these limitations are

summarized below.

o Expert System Technology Is Not Appropriate for AH Problems

Suitable problems for development as expert systems were discussed at length
in section 6 and will not be restated here.

o Expert Systems Are Highly Specialized and "Brittle Aroimd the Edges"

The problem sohdng power of an expert system is limited to those types of

problems the knowledge base has knowledge about. If a problem is ^presented

to the expert system that requires knowledge not contained in the knowledge
base, even if the amount of this knowledge is minimal, the expert svstem will

fail.

o Maintenance of Large Expert Systems Is Poorly Understood

In practice, maintenance of large expert systems may prove costly and time
consuming. Since few really large expert systems have been developed, this

topic is p>oorly understood at present. Large expert systems w^iU be an
important area of research in the future.

8.0 CONCLUSIONS

This paper has introduced the basic concepts of what expert systems are and
how they work. Applications of expert system technology and criteria for selecting

appropriate tasks for development as expert systems w^ere also discussed.

This brief introduction has emphasized both the benefits provided by expert

system technology as w^ell as some of the w^eaknesses and limitations. Despite

limitations, exp>ert system technology is both expanding rapidly and stabilizing. The
technology is stabilizing in that much has been learned about how the technology'

can be used and what the limitations are. In many organizatior\s, development of

expert systems has become as acceptable as development of conventional software.

Expert system technology is expanding because it is being appHed in many
new' domains of endeavor. Among the most important are Geographic Information

Svstems.
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Introduction

Geographic Information Systems (GIS) and Expen Systems (ES) are two dynamic

technological domains. There has been much written on the potential to be realized through

their integration (Robinson and Frank 1987; Robinson ct al 1988; Fisher et al 1988). GIS and

its application are fields fraught with complexity while ES provides tools and techniques for

searching through complex problems to arrive at solutions.

Geographic Information Systems, Artificial Intelligence

Expert Systems and Knowledgebased Systems

A Geographic Information System (GIS) is a specialized kind of information system

designed to gather, process, and provide geographic information that may be relevant for

research, management decisions, or administrative processes. In this regard, it shares many

characteristics with other, nongeographic, information systems. GIS does present some

problems peculiar to the geographic domain. Data management problems are much more

complex because of the necessity of collecting, representing, and processing spatial data and

Geographic Information Systems and Expert Systems
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their relationships. In an effort to solve problems arising from this complexity some have

suggested that the fields of artificial intelligence and expert systems may offer assistance

(Fisher et al 1988; Robinson and Frank 1987; Robinson et al 1986; Robinson et al 1988).

The field of Artificial Intelligence (AJ) concerns the development of theories and

techniques required for a computational engine to efficiently perceive, think, and aa with

intelligence in complex environments (Fox 1990). The areas of knowledge representatioo and

search form two of the most important core concepts of this field. They are particularly

relevant in addressing how to represent geographic information and find the solution to

geographical problems.

A spinoff of Al known as Expert Systems (ES) is a field concerned with developing

computer programs emulate the search behaviour of human experts in solving a piroblem.

Qosely related to ES is the field dealing with Knowledgebased Systems (KBS). KBS are

systems that use domain knowledge to guide search in ways that differ from an expen’s. The

search and representation techniques are usually drawn from the Al-related research.

Classical ES/KBS systems have an inference engine and a knowledgebased. They are

often developed using an Al-based language or development tool. In additions, there may be

interfaces to relational database management systems and other system resources. Another

approach is to embed the ES/KBS in an application-specific system. To the user it may appear

as little has changed beyond improved performance and flexibility.

Geographic Information Systems and Expert Systems
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Expert/Knowledgebased Systems and GIS

Two general approaches to integrating GIS and ES/KBS technology have emerged

recently. One is to build an application domain-speciBc KBS that sits separate from GIS but

communicates with GIS. In this case, the ES/KBS uses the GIS as an information jH-ocessing

resource which produces data for the ES/KBS’ use. Thus, little, or no, intelligence is added

to the GIS, but rather the GIS becomes a component of an ES/KBS (e.g.. White and Morse

1987)

.

Efforts such as the Intelligent Land Information Manager (ILIM) (Robinson and Zhang

1988)

,
RESHELL (Goodenough et al 1987), Knowledgebased Spurious Polygon Processor

(Robinson and Miller, 1989), and Intelligent Terrain Gassification System (ITCS) (MacKay

1990), are to some extent directed towards the support of managing geographic information

resources over time. Something a number of these approaches have in common is their

"object-orientation" in handling geographic information. In this sense they ait adding

intelligence to geographic information systems.

The retrieval function of GIS is not limited to retrieving geographic information in

response to a user query. It also includes the ability to interchange data with another GIS. In

concept, the interchange function is analogous to handling the query from another system, not

a human-user. Application of RESHELL involves communication and exchange of information

among many expert systems, hence here is a system where not only is expertise in multiple

domains present but also expertise on communicating among those domains. The Spatial

Relations Acquisition Station (SRAS) addresses the problem of specifying and representing a

spatial relation which is a fundamentally fuzzy concept As such could be integrated vdth an

existing query language such as the Structured Query Language.

Geographic Information Systems and Expert Systems
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Spatial analysis often included in the retrieval function, but is broken out here because

there are special demands in the analysis of geographic data in response to an analytical query.

The intelligent terrain classification system (TTCS) is an example of an application of ES/KBS

in a geographic information processing domain. Although the basic geographic data describing

the basic measurements of terrain arc usually found in geographic databases, there is limited

ability for the systems to automatically identify common geonwrphic features. ITCS is an

attempt to provide that capability while at the same time trying to formalize a model of glacial

terrain features. In addition, this example illustrates how important the object-oriented paradigm

is in development of intelligent geographic information processing capabilities.

Many people think of GIS as a map-making system. Indeed, one of the defining

characteristics of many geographic endeavors is reliance upon, or production of, maps. The

problems of name placement, map generalization, and others are among those most commonly

identified as realizing the potential from integrating ES/KBS with GIS (Robinson et al 1988;

Fisher ct al 1988). In automating nautical charting, NOAA has engaged in developing an

embedded ES/KBS which has knowledge of how to draw maps. This is also an example of

an effort to build an embedded ES/KBS.

Trends in ES/KBS and GIS

The integration of ES/KBS and GIS is becoming increasing frequent, but not comnwn.

Their integration is still viewed, rightly or wrongly, as more of a research and develc^ment

activity than for operational implementation. There are several trends developing that

characterize the growing interrelationship of GIS and ES/KBS.

There is increasing interest in integrating commercially available expert system shell

and GIS products. However, most efforts have concentrated on using ES/KBS techniques

within GIS operations or using ES/KBS tools as an "interface" to GIS. In some ways, this may
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represent an effort to make the interface the GIS "expert"

AI languages are being used increasingly as tools to develop prototype systems. Often

these efforts are directed towards developing specifications (e.g., Robinson and Zhang 1988;

Roman 1986; Webster 1990). Others may be directed towards providing adjunct intelligence

to GIS processes(e.g., Robinson and Miller 1989).

Increasingly there is use of AI techniques being incorporated in GIS. For example.

Band (1989) describes the use of AI search and computer vision techniques to address

problems of automatically extracting terrain features from digital elevation models. However,

most efforts remain KBS rather than ES in that few attempts are made at formally capturing

the expertise of some person who is expert in a particular geographic domain.

One of the most fundamentally important trends is in development of object-oriented

approaches to GIS. It is quite natural for GIS users to manipulate geographic entities as

objects. However, as Mohan and Kashyap (1988) have shown, there are extensions that need

to be made to the object-oriented systems before the flexible manipulation of spatial

information is possible. For example, a requirement of any object-oriented geographic

information system is the ability to manage multiple inheritance.
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GIS/EXPERT SYSTEM DEMONSTRATION:
NOAA's CartoAssociate

Steve Luckey, Artificial Intelligence Group
Nautical Charting R&D Laboratory

Nautical Charting Division/Coast and Geodetic Survey
National Oceanic and Atmospheric Administration

Rockville, Maryland 20852

Objective

This presentation demonstrates the current status of a prototype system under
development by the National Ocean Service, Coast and Geodetic Survey that

utilizes object-oriented and expert systems techniques to aid in the automated
production of NOAA’s nautical navigation charts. After describing the basics of

the prototype, this paper discusses the menu selection sequence and the resulting

effects that were shown at the live demonstration. References to the display

screen user interface menu item selections are denoted by enclosed single quotes.

System Platform

The hardware platform is a Tektronix 4317 engineering workstation with a 19"

color screen, 8 MB RAM memory, and 240 MB disk space running under Unix.

The software packages are: the Analyst Information Management System and

Humble Expert System Shell, both from Xerox Corporation, Servio

Corporation’s GemStone Object Data Base Management System, and Tektronix

Corporation’s full implementation of the Smalltalk-80 language and environment.

Description of Software System

In this system the software engineer has available the development tools provided

by the Analyst, Smalltalk, and Humble integrated environment. This includes

facilities for data management, data base creation, editing, creation of maps with

scaling algorithms and links to data bases, and the integrated link to the expert

system shell. With the windowing capabilities provided by Analyst and Smalltalk,

the programmer can bring up windows on the database, the Humble Rule Editor,

the Smalltalk environment with full source code implementation, and if desired, a

window on a user created map or chart to display results graphically.
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These windows can be displayed singly or concurrently, and by clicking the

mouse inside the appropriate window, activate the window. The programmer can

then alternate selections between windows, changing data base attributes, adding

or changing values, writing or changing Humble rules, writing Smalltalk code,

and displaying the results at the same time.

The CartoAssociate Project

This project is a beginning effort to automate the more difficult aspects of chart-

making now performed in the manual mode. Design details related to these

aspects are described in [Pendleton, 1991] and [Luckey, 1988]. The Galveston

Harbor, Texas, area was selected as a test site for the prototype because this area

has overlapping charts at different scales allowing us to compare our results to

existing charts. We decided to select an area roughly centered on Pelican Island

containing typical aspects of the harbor/nautical channel chart depiction problem .

In creating a suitable user interface, we started with a blank chart window at a

specific scale, centered on a specific spot in the western hemisphere, with the

image on the screen as large as possible. In order to retain all the menu-driven

mapping functions already present in the Analyst, along with the capability to

write our own functions. Xerox supplied additional Smalltalk code allowing us to

zoom in on a section of the Continental United States Map (already in existence

within Analyst) and create full-screen chart windows at any required scale.

We have added nonmodal user interface features to the existing Analyst menu
functions, including a chart compilation selection. This section leads into a sub-

menu for further selection of specific NOAA nautical chart compilation activities.

The interface is nonmodal like the Smalltalk-80 environment, in that all.facilities

are simultaneously available to the user; e.g., it is not necessary to first exit a data

retrieval mode in order to enter a chart editor mode.

The Data Base

The CartoAssociate’s design concept requires that the data drives the system, that

is, the system looks first to the data base for answers and values. Once data

values are entered into the data base and validated, they are considered accurate

and are not modifiable by any subsequent compilation process. The Analyst

provides a feature whereby one can easily create and test relational-type data

bases with cartographic attributes and values for each type of chart feature.

Although not an object-type data base, it is a quick way to build and maintain a

test data base for prototype development The next project task is to fully load

Servio Corporations's object data base management system GemStone with chart

feature data to transition the prototype to a full feature object data base.
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Our data bases contain attributes and values for real-world features app)earing on
NOAA's nautical charts. Tliese include: shipping channel specifications and
channel segments; shorelines and dangers, including rocks, wrecks, and pilings;

navigational aids, including buoys and range lights; and text data for buoy labels.

The Expert System

By integrating the Humble expert system shell into the Analyst/Smalltalk

environment, we have added object "intelligence" to an already rich

programming paradigm that can assist in solving very complex chart compilation

problems. One of these problems is to be able to determine the appropriate icon

symbols to represent real-world objects on a chart. This must be done within an

overall context of detecting and resolving conflicts between competing features of

the same or different ty’pes for the same chart "w^hite" space.

The knowledge base rule set was created such that the rule parameters were

requirements to be satisfied before the expert system could derrive a solution.

One simple way to meet these requirements and satisfy our data-driven restraint

was to make the expert system parameters a subset of the data base attributes for

that entity ty^pe. TTiese are the entities about which the CartoAssociate makes
inferences. A set of parameters was devised to characterize the data values for

instances of danger features, such as their geographic positions, height above

mean sea level, color, flashing rate, name, etc. A Dangers Knowledge Base of

"if—then" rules was then created in Humble rule format, as shown in Figure 1,

and identified as an abstract data type called "Dangers" to represent the set of

real-world hazards to navigation such as rocks, wrecks, pilings and platforms.

From within the CartoAssocia'te's Smalltalk code: (1) the data base is queried; (2)

a feature object is interrogated for its attribute/parameter values; (3) these values

are passed to the Dangers Knowledge Base; (4) and the inference engine returns

an answer. The Humble inference engine processes the rules to infer an

answer/value which, for this particular request, is used as the key to a table of

icons containing the selected symbol. In this manner, when given appropriate

parameter values about a danger object from the data base, the CartoAssociate’s

backward-chaining rule processing mechanism proceeds to search the space of

feasible possibilities to generate a correct icon symbol selection.

Channel Representation

Shipping lanes, or charmels, are important to the mariner and play a very

important role in NOAA's chart-making process. Channels have specific rules

about how they are displayed and how other related nearby features are depicted.
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Channel specification databases were built using data from Corps of Engineers

blueprints to capture channel specific data including channel name, channel

azimuth, channel width, and the channel turning points.

Smalltalk code was created to address this data base, extract the latitude and
longitude for the channel turning points, convert the points to screen coordinates,

compute and connect the intercept points between adjacent channel lines, and

display the results as a series of lines representing real-world navigational

channels.

A great deal of effort went into acquiring the Corps of Engineers data, building

the data bases, and deriving the code to compute and connect the channel segment

intercept points. This was chosen as a good starting point in the development

because channel displays should be considered "super features" of the nautical

chart. Such entities will be implemented as compound objects, i.e., features

composed of other more basic nested features, in the object data base as the

prototype's implementation proceeds. Currently, the prototype's "intelligence" is

limited to the resolution of conflicts with individual chart point features.

Compound feature resolution will be attacked as a second step.

Icon Conflict Resolution

A primary item of interest is a navigational aid called "buoy". Buoys are

normally channel markers and, as such, are usually associated with and near to

channels. On die Adantic side of the United States, the red buoys mark the right

side of the channel and the green buoys mark the left side as the ship enters the

channel from the ocean side. This will become important at a later stage when the

CartoAssociate will be required to resolve certain conflicts between overlapping

features and labels in areas of the chart near channel boundaries.

Icons representing real-world objects, such as buoys, appearing in the Nations's

waterways must meet certain requirements for portrayal on NOAA nautical

charts, particularly when these objects define channels, ^tablish right-of-way, or

signify a danger. Whenever an icon overlaps or conflicts with another feature,

there are certain rules and specifications that the cartographer must follow for

moving, removing, or selecting an alternate portrayal. Under the chart

compilation model, each chart object knows about itself and its own behavior

(i.e., how it can portray itself) under a variety of circumstances. Tliis behavior is

defined by software routines and knowledge base rules w^hen the object is initially

defined.

With this in mind, the design approach to the icon conflict resolution problem
was to think of each icon object as having an x, y grid coordinate system with an
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origin located at its center, thus dividing the small potential conflict area about

the object into four quadrants. Close neighbors are then tested for icon overlap

and, if found, the overlapping object and any other close neighbors are noted as

occupying their respective quadrants. If a quadrant is occupied by more than one
neighbor, the closest one is noted. These quadrant occupations become parameter

values for rules in the knowledge base as used by the CartoAssociate to choose an

unoccupied quadrant.

Utilizing this knowledge, together with distance information between object and
neighbor, the CartoAssociate determines a distance and direction to shift the icon

symbol. If all quadrants are occupied, then a system solution is not possible and

the icon is added to a deferred icon collection for placement via user interaction,

after all system performed icon placements are finished.

Label Conflict Resolution

One of the heuristics associated with chart features and channels is that chart

features and/or their accompanying labels cannot be placed in the interior of a

channel graphic. To satisfy this heuristic in terms of buoy labels, a Buoy Label

Knowledge Base was created to deal with the rule parameters of channel width

and azimuth, buoy color, and the specific buoy label characteristics that defme the

buoy label.

As before, the appropriate feature database is interrogated, attributes/parameter

values are extracted, and the values are passed to the Buoy Label Knowledge Base

for resolution. After chaining through the knowledge base, the inference engine

returns a set of appropriate locations for each characteristic of the label. These

become the starting candidate locations for the label. Initial chandidate positions

are established according to the 8 candidate box positions suggested in [Yoeli,

1972] and [Imhof, 1975] with a revised priority ordering that meets NOAA
nautical charting requirements.

The candidate locations are constructed as bounding boxes which are tested

against the bounding boxes of the neighbor objects. Since the candidate boxes are

in priority' order in the tested array, the first candidate box that passes the test for

no neighbor conflicts is the one selected. If a candidate box cannot be found to

pass the test, the label is added to a deferred label collection for placement via

user interaction, after all system performed label placements are fmished.

Display

Feature icons and labels are displayed after all conflicts are either resolved or

deferred. Several interactive user interface display tools, involving the use of the
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screen cursor and mouse, have been developed to aid the user in placing deferred

labels and icons.

Figure 2 shows a display of the chart feature data as icons before any expert

system processing is performed. It can be seen that icons for piles, channels, and

other features as well as labels for text are in conflict in numerous locations on

the display. Figure 3 shows the results after expert system processing in which

these conflicts and overlaps have been resolved.

Future Development

As development contines, we plan to focus on three key issues.

1. Add the object database component, Servio Corporation’s GemStone
Data Base Management System, to the prototype and populate it for a series of

data base volume tests. This will be crucial to future work with more complex
charting data.

2. Expand the user interface by creating a more natural entry into the

system and then streamlining and standardizing the functionality within the

compilation code development.

3. Continue to expand the prototype's functionality in conflict resolution

operations and other fundamental cartographic problems using expert systems,

GIS concepts, and the inherent power within the object environment to manage
the complexity of the evolving software system.
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OBJECT CONCEPTS

by

Christopher Dabrowski and Elizabeth Fong

This paper provides a description of the concepts generally
associated with the object-oriented prograiming paradigm.
Object-oriented programming is a powerful tool for developing
computer systems that represent and process complex structural
information. This paper provides a tutorial introduction to
object concepts and describes how the object-oriented approach
may be used in modeling real-world information systems.
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1 .

0

BACKGROUND

This paper provides an introduction to the concepts that
underlie the object-oriented programming paradigm and illustrates
how these concepts can be applied. Object-oriented programming is
a powerful tool for developing computer systems that represent and
process complex, structural information. For many applications,
the object-oriented approach offers significant advantages over
conventional software by providing clearer structure, reusability,
and easy maintainability.
1.1

Brief History

The origins of object-oriented programming lie in experimental
computer languages developed in the 1960s, such as Simula [DAHL66]
and CLU [LISK77]. The first programming language that exhibited
all of the major characteristics of the object paradigm was
Smalltalk [GOLD83]. Smalltalk resulted from a research effort
undertaken in the 1970s at the Xerox Palo Alto Research Center.
The term "object-oriented” was coined during the course of the
development of Smalltalk [H0R083].

Subsequently, other object-oriented programming languages have
emerged including the Flavors subsystem in ZetaLisp [CANN82], C-h-

[STR086] , and the Common Lisp Object System [CLOS88]. This has
been followed by the introduction of commercial object-oriented
database management systems including Iris [FISH89], Zeitgeist
[FORD88], Gemstone [MAIE87], and ORION [KIM89] . Object-oriented
database management systems will be described in subsequent papers
in this publication.

1.2

Organization Of This Paper

The organization of this paper follows the concepts of the
object paradigm. Section 2 introduces objects as fundamental
computational entities. Section 3 discusses object classes, or
"types" of objects. In Section 4, the ability to create class
hierarchies that share class definitions through inheritance is

discussed. Sections 5 and 6 introduce additional aspects of the
object paradigm. Section 7 presents conclusions.

Before proceeding, it is appropriate to state that there is

no single agreed upon definition of what the terms "object" and
"object-oriented" mean. Recently, there have been several efforts
to standardize on object systems including [OODB90]. As a result,
there has been a growing trend to use the term "object" instead of
"object-oriented.

^In this paper, the term "oriented" will be omitted
except referring to object-oriented programming languages or
object-oriented programs.
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2 . 0 OBJECTS

Conceptually, an object is something that is perceived as an
identifiable, self-contained unit that can be distinguished from
its surroundings. As such, an object has essential information
about itself and may be able to perform operations that cause it
to exhibit a behavior. In the real world, we can easily identify
many objects. An example might be an airplane. An airplane is
readily identifiable and is distinguishable from its surroundings.
An airplane can be said to maintain certain information about
itself; e.g., its color, weight, and altitude. An airplane can
also perform certain operations that cause it to exhibit a
behavior; e.g. ,

it can fly.

In a computer program, the concept of an object is implemented
as a software component. This component consists of both
attributes ^ that contain important information about the object
and procedures, called methods . that define the object's behavior.

• A Software Component That Contains
Information And Procedures

Figure 1. An Object

^In many object-oriented languages the term "instance
variable" is used instead of attribute. However, attribute is more
widely used in the data processing community.
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A particular computer application may contain many objects. Each
object has an unique identifier known as an object identifier , or
handle . The unique identifier serves to distinguish objects from
each other. Each object also has a state that is defined by the
value of its attributes. During the execution of a program, the
object's state may change; e.g., the value of its attribute values
change. However the object's identifier remains fixed.

The function of objects in a computer program is to model
real-world objects by capturing their most important informational
and behavioral aspects. As such, objects in a computer program are
said to represent abstractions of real-world objects.

An airplane can be modeled as an object. An airplane object
can have a set of attributes that constitutes an internal state
which can change over time. The attributes for the airplane object
might be Altitude, Groundspeed, and Fuel. The airplane object's
behavior may be represented by a set of methods that describe how
the airplane takes off, climbs, and descends.

Figure 2. Modeling An Aircraft As An Object

The ability to represent abstractions of real-world objects,
events, systems, and processes is one of the most important aspects
of object-oriented programming languages.
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2.1 Communicating With Objects: Messages and Methods

Communication with an object is accomplished by sending a
message to it. A message is a request made to an object to perform
an action or carry out an operation. Messages contain the name of
the message, the object identifier of the object to which the
message is being sent, and any arguments that may be necessary to
perform the operation. When an object receives a message, it
invokes one of its methods to perform the operation. A method may
itself send messages to other objects.

An example illustrates how message passing works. A computer
program simulating the flight of airplanes may need to model the
descent of an aircraft. This is done by sending a DESCEND message
to an AIRCRAFT object. In this case, the message contains the
object identifier of the airplane object and a single argument.
The argument contains the altitude to which the aircraft must
descend - 10000 feet. When the AIRCRAFT object receives the
message, the DESCEND method is invoked. The method performs the
descend operation. During this operation, the value of the
Altitude attribute is changed to 10000, thus altering the object’s
internal state.

Figure 3. Modeling Aircraft Descent
Through Message Passing
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In an object system, each object may respond to many different
messages. The entire set of messages an object responds to
constitutes its public interface and is sometimes referred to as
a protocol .

2.2 Encapsulation of Objects

An object's internal state is accessible only by the object
itself. The values of the object's attributes cannot be accessed
and changed directly by any external agent. Even the names of the
object's attributes are not known to external agents. Similarly,
the details of the operations performed by the object's methods are
not visible to any other external agent, including the sender of
the message. This characteristic hiding of the object's internal
state is known as object encapsulation .

An object's internal state can be effected only indirectly
through message passing and method invocation. When a method is
invoked, only the result of the operation may be seen by external
agents. Intuitively, encapsulation of an object makes it into a
"black box."

When the AIRCRAFT object receives the DESCEND message, the
details of the method performing the descend computation are not
seen. Similarly, the change to the object's internal state is also
unseen. An external agent that wishes to know the new altitude of
the AIRCRAFT object must use the object's protocol. To provide the
value of the Altitude attribute, the protocol can be defined to
include a SHOW-ALTITUDE message. A corresponding method can also
be defined that returns the value of the Altitude attribute.

To summarize, an object can be effectively divided into two
parts: an interface part and an implementation part. The
interface part is the object's protocol, or the messages to which
it will respond. The implementation part is the object's internal
state and its metnods.

2.3 Contrasting Object-Oriented Progranning With Conventional
Progreuming

In an object system, message passing between objects is the
predominant mode of computation. In contrast, conventional program
organization is characterized by program control through subroutine
invocation. The differences between the programming paradigms is
illustrated in the following figures.
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Figure 4. Flow Of Control In Conventional Software

Figure 5. Flow Of Control In An Object-Oriented Program
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These characterizations, however, are not absolute. In many
programming languages, message passing can be mixed with
conventional procedural control, as is the case with CLOS and C++.3.0

CLASSES OF OBJECTS

Classes define kinds, or types, of objects. A class
definition is a description consisting of a set of attributes that
all objects of the class will have, a set of messages that these
objects will respond to, and a set of methods for implementing
operations associated with the messages.^ Classes are also
sometimes referred to as abstract data types [J0SE89].

3.1

Creating Objects From Class Definitions

In a computer program, many classes may be defined. Each
class description serves as a template from which new objects are
created. These objects are called instances of the class they
belong to.

Every object is an instance of a class. Each object has the
same attributes provided in the class description. Each object
responds to the same messages and implements the same operations
defined by the methods of the object's class.

3.2

Relationships Between Classes

Class definitions can describe real-world relationships that
link dissimilar kinds of objects. For instance, in an actual
airport, individual aircraft might be assigned a hanger for storage
purposes. This relationship can be modeled by first defining an
AIRCRAFT class with an attribute called Hanger. Another class
HANGER can then be defined that describes hangers. The Hanger
attributes of the instances of AIRCRAFT can then contain the object
identifiers of HANGER objects. These HANGER objects correspond to
the hangers in which the aircraft are housed.

The relationship between aircraft and hangers can also be
expressed in the opposite direction. The HANGER class may be
defined to have an attribute called Stored_Objects which will
contain, as its value, a list of aircraft. In this case, the

^ Not all object-oriented programming languages support
the class concept. For an example of an object-oriented
language without classes, see [UNGA87].
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Stored_Obj ect attribute of a HANGER instance will contain a list
of object identifiers of individual aircraft^.

Object systems can exhibit considerable flexibility in
describing relationships between dissimilar objects. Attribute
values may not be restricted with respect to the class of the
object. For instance, the Stored_Object attribute can be extended
to contain the Object identifiers of different classes of aircraft
or even other vehicles.

4 . 0 INHERITANCE

Complex applications that make use of objects, such as
Geographic Information Systems (GIS)

, often require the definition
of many different classes. It is possible to have a separate class
definition for each kind of object. However, if some objects are
more specific kinds of other objects, it would be natural to take
advantage of this relationship when defining classes. This could
be done by having class definitions in which a specific class can
share or borrow part of the definition of a more general class.

4.1 Superclasses And Subclasses

The mechanism for creating a class definition that derives
attributes and methods from another class definition is called
inheritance . A class that inherits attributes and methods from
another class is referred to as a subclass . The class from which
the subclass inherits attributes and methods is its superclass .

The concepts of superclass and subclass are analogous to the
concepts of generalization and specialization familiar in data
modeling methodologies [SMIT77].

In the example, a class called PASSENGER_AIRCRAFT may be
defined as a subclass of the class AIRCRAFT. As a subclass,
PASSENGER_AIRCRAFT would inherit the attributes and methods of
AIRCRAFT. But, PASSENGER_AIRCRAFT may have additional attributes,
such as Number Of Passengers and Baggage Weight. Similarly,
PASSENGER_AIRCRAFT may have methods that describe operations unique
to passenger aircraft, such as procedures simulating loading of
passengers and flying holding patterns.

^Describing relationships between dissimilar entities is not
unique to the object paradigm, but is also an essential
characteristic of many other data modeling systems [CHEN76],
[C0DD81]

.
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SUPERCLASS

AIRCRAFT

ATTRIBUTES

Altitude
Groundspeed
Weight

METHODS

Takeoff
Climb
Descend

PASSENGER AIRCRAFT Inherits

Attributes And Methods Of Its

SUPERCLASS. But, It May Define

Additional Attributes And Methods
Including A NEW DESCEND METHOD.

GENERALIZATION &
SPECIALIZATION

SUBCLASS
\

PASSENGER AIRCRAFT

ATTRIPUTES

Number of Passengers

Baggage Weight

METHQP.S

Load Passengers

Fly Holding Pattern

DESCEND

Figure 6. Inheritance In Classes Of Aircraft

In addition, PASSENGER__AIRCRAFT may also define a separate
DESCEND method with special constraints on maximum rates of
descent. The new DESCEND method defined in PASSENGER_AIRCRAFT
replaces, or shadows, the DESCEND method defined for AIRCRAFT.

4.2 Class Hierarchies

Using inheritance, class hierarchies can be created which
reflect natural relationships found in the real world. For
instance, we may further specialize PASSENGER_AIRCRAFT to create
a new subclass AIRLINER.
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Figure 7. Formation Of Class Hierarchies

Much larger hierarchies can be created that describe complex
taxonomies

.

Inheritance permits sharing of class definitions. In a
computer program, the extensive use of inheritance can
substantially reduce the amount of code needed to implement an
application. For this reason, object-oriented programs are said
to promote code reuse .

4.3 Extensibility

Object systems are inherently extensible. Inheritance allows
class hierarchies to be extended by creating new class definitions
that reference existing superclasses. For instance, suppose that
during the development of the aircraft simulation application, the
need arises to model a reconnaissance aircraft. It is easy to
define a new class SPY_PLANE and add it to the existing hierarchy
by specifying MILITARY_AIRCRAFT as its superclass.

Extensibility has important consequences for software
development. Not only can existing applications be easily modified
and extended, entire class hierarchies developed in one application
can be reused or transplanted to new applications.
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4.4 Multiple Inheritance

In many object-oriented languages, it is possible for a class
to have more than one superclass. This is known as multiple
inheritance . Using multiple inheritance, subclasses can be defined
that combine the characteristics of two or more superclasses. As
an example, a class SEAPLANE can be defined that inherits the
attributes and methods of both AIRCRAFT and WATERCRAFT.

AIRCRAFT WATERCRAFT

ATTRIBUTES AnBlBUTES
Altitude

Hull Draft
Weight

METHODS METHODS
Takeoff

Draw Water
Climb
Descend

Figure 8. Multiple Inheritance

Multiple inheritance is often advantageous in creating applicat-
ions with complex modeling requirements, such as geographic
information systems. For interested readers, multiple inheritance
is discussed in [CANN82] and [CARD90].

5.0 POLYMORPHISM

Polymorphism adds an important dimension to an object's
behavior. Polymorphism means that an object's response to a
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message is determined by the class to which the object belongs.^
Instances of different classes can be addressed in a uniform
manner; e.g., receive the same messages, yet exhibit different be-
haviors .

In the example, polymorphic behavior can be achieved by first
defining two classes of airplanes: PASSENGER_AIRCR?lFT and
FIGHTER_AIRCRAFT. DESCEND messages can be defined in the protocols
of both classes. However, each class defines a different DESCEND
method that uses a different maximum rate of descent. For
instance, a fighter aircraft can descend much more quickly than a
passenger aircraft. When DESCEND messages are sent to instances
of either class, a different method responds and performs a
different descend operation.

Polymorphism is a powerful aspect of the object paradigm
because it permits objects of different classes to be addressed
uniformly. The sender of the message does not necessarily have to
know the class of the receiving object to successfully accomplish
the operation. This can be particularly important in an
application with many objects of different classes where it is
necessary that each object respond to the same message and perform
different behaviors.

Polymorphic behavior is closely associated with run time bind-
ino . or dynamic binding . Run time binding means that the selection
of the method that responds to the message is made at run time,
during the execution of the program. When the message is sent, it
is not known beforehand which method will be used. The selection
of the method is performed by an internal mechanism maintained by
the system for this purpose. In a conventional program, the
determination of what code will be executed is made earlier, when
the program is compiled.

Polymorphic behavior can be much more complex when inherited
methods are invoked. This is particularly so when multiple
inheritance is used. The references given at the end of this paper
can be consulted for further information.

6.0 COMPOSITE OBJECTS

Composite objects , or complex objects , are among the most
recent developments in object technology. A composite object is
made up of other objects. In other words, it is constructed from
a collection of parts, each of which is itself an object.

^ More generally, polymorphism refers to being able to
apply a generic operation to data of different types. For
each type, a different piece of code is defined to execute the
operation.
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For instance, an AIRCRAFT might be defined as a coinp>osite
object consisting of separate parts for FUSELAGE, ENGINE, COCKPIT,
etc. Each cocponent part is an object and an instance of a class.
The process can be extended to produce a part hierarchy ,

illustrated below in Figure 9.

Figure 9

.

An Example Of A Part Hierarchy

Individual components are said to be in an "Is-Part-Of

”

relationship to the composite object. For instance, INSTRU-
MENT_PANEL and PILOT_SEAT are in an "Is-Part-Of" relationship to
COCKPIT.

Composite objects are potentially useful in many application
domains. Some examples are the modeling of part hierarchies in
engineering design systems, and the representing spatial data in
geographic information systems.

Composite objects have special requirements for generic opera-
tions on their components [DAYASO]. These include operations for
manipulation of the composite object as a whole and for
manipulation of component subsets. It also includes the ability
to define operations which can be propagated to components via
relationships. For instance, a message COMPUTE_TOTAL_WEIGHT might
be sent to an instance of the composite object AIRCRAFT. The
message is propagated by AIRCRAFT to each of its components. If
any of these components have subcomponents, the action will be
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repeated. Each component adds its own weight to that of any
subcomponents and returns it to the composite object that it "Is-
Part-Of." In this way, the total weight of the entire aircraft is
computed.

Experimental implementations which support composite objects
are described in [DAYA90]

,
[BLAK87], and [KIMW87].

7.0 CONCLUSIONS AND SUMMARY

This paper has provided a brief overview of the object
paradigm, describing its essential features and their application.

Object-oriented programming languages provide many advantages
including modularity, extensibility, software reusability, and the
capability to easily and clearly model real-world systems. In
addition to programming languages, object concepts have been
applied with success to graphics systems, software development
environments, computer operating systems, and geographic
information systems.

The application of object concepts to geographic information
systems is a major theme of this publication. Subsequent papers
will provide more detail.
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Abstract

Systems employing large amounts of geographic information

support a wide variety of applications. Increasingly, these systems

support the development of sophisticated spatial arguments in

different problem domains. This requirement demands maximum

expressiveness in the underlying data model. Object-oriented

database (OODB) techniques promise to provide needed support for

advanced modeling needs. Specific areas of concern in the

development of OODB systems include: 1) Implementation strategies

needed to support the complexity of the model; 2) Integration of the

data modeling capabilities with programming languages; and 3)

Cognitive overhead in support of sophisticated modeling needs.

Areas of promise in using the object approach include: 1) Localized,

standard models and behaviors support the development of user

interface management systems; 2) Direct database support for

graphical presentation; and 3) Computational behaviors associated

with data elements provide the ability to support analytic

procedures. Geographic modeling needs, and the consequent

applications, will benefit from the development of semantic models

to support multiple levels of access and manipulation.
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Introduction

Object-oriented database (OODB) technologies promise to

provide added capability to the system developer tool-kit. The

advent of new applications, centered around graphical displays, user-

oriented models and the integration of databases, are directly

supported with OODB. Systems using spatial information, by their

very nature, are natural candidates for these advanced modeling

abilities. This is especially evident as the user community becomes

more sophisticated and applications begin to closely model real world

problem areas.

Object-oriented approaches are part of the logical evolution in

software tool development. The definitions of Wegner [1] provide a

basis of definition for object-oriented approaches. Wegner identifies

and discusses three degrees of "objectness" in the object model:

• Object-based - Languages that support the concept of objects.

Objects are characterized by models of internal state and

behavior. Object behavior is implemented through the use of

message passing.

• Class-based - Class-based languages extend the object-based

concept by placing every object in a particular class. This

mechanism allows the system to provide notions of class

modeling, behavior and type derived behavior.

• Object-oriented - The final category defined by Wegner adds

the concept of inheritance to the object-based and class-based

concepts. Inheritance provides the capability to model generic

behaviors with generalization notions while providing an ability to

create specific behaviors with aggregation mechanisms.

Wegner’s definitions pertain to object-oriented languages.

Other recent articles by Kim [2], and Atkinson [3] identify definitions
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for OODB. A minimalist definition for OODB that we adopt covers two

criteria:

1) The system should be a database management system - This

criteria means the system must provide all the features found in

DBMS's, i.e. persistence and integrity.

2) OODB's must support object-oriented constructs - The

modeling capabilities associated with object-oriented languages,

such as class and hierarchy/lattice definition and method support,

must be included in the database system.

OODB's provide extensions to typical database environments in

two critical areas. First, abstract data typing provides modeling

beyond flat file types, supporting the development of semantic

models of the data sets. Secondly, the association of computational

methods with the database supports dynamic behaviors.

Object-Oriented Modeling and Geographic Information

Geographic information is especially suited to the development

of OODB models. By their very nature, geographic data sets pertain

to real world entities. Applications utilizing this information can take

advantage of an ability to model multiple facets of the underlying

information base. One possible approach to high-level geographic

semantics includes models for:

• Physical entities - The support for physical entities includes

both a static and^ dynamic view of all geographic objects. The

static representation captures long term, slowly evolving traits of

the entities. Our development efforts, centered around interactive

systems, led to the need for a dynamic view of the base objects.

Linkage is provided for creation of objects not included in the

base model, subsets of the underlying base and thematically

derived geographic information. The OODB approach allows all of
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the objects, static, dynamic or implicitly derived, to be treated in a

consistent and uniform fashion.

• Cartographic models - Effective use of geographic information

in decision support is augmented by the inclusion of cartographic

presentation methods. The OODB approach allows us to develop a

process model of cartographic presentation. Overall control issues

in base map selection, feature generalization and thematic overlay

generation are encoded in a uniform fashion.

• Geometric models - Geometric models are comprised of the

operations needed to support metric and topological interactions.

The OODB model allows system developers to think in terms of the

low-level primitive functions. These in turn can be used to

develop the specific, higher-level spatial operations needed by

applications.

Following this approach, multiple views of the information

sources needed and the operations required are integrated in the

underlying information base. The modeling decomposition allows

application development to focus on the salient components related

to the problem at hand.

Benefits of the OODB Approach

In our experience, there are many benefits to be gained from

the OODB approach. Some of these benefits are:

1 ) Modularity in data design - Encapsulation, both in terms of

state and behaviors, allows designers to focus on the generic

aspects of the data base entities. The focus on objects at this level

leads to the development of standard sets of vocabularies and

interactions enhancing the reusability of the information base.

2) Integration of higher level semantics - Multiple granularities

of data are maintained. Support for low-level data entities are
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extended with high level constructs. Vocabularies can be

designed to support the application level, building on the lower

levels.

3) Support for interactive mapping environments - Explicit

maintenance of geographic entities and their corresponding

cartographic presentation provides direct support for the

development of the displays needed for interactive decision

support. Direct manipulation interfaces for the maps and mapped

objects are supported, leaving the application developers free to

develop appropriate models of the interfaced process.

Selected References

[1] Dimensions of Object-Based Language Design, Peter

Wegner, OOPSLA 1987

[2] Object-Oriented Databases: Definition and Research

Directions, Won Kim, IEEE Trans, on Knowledge and Data
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ô.
o
(J
c
o
CJ

CQ

Q
O
O

a;>

X
a^

C

00
C
tl)

T3
C-)

o
CJ

CJ
b£>

T3

c/^

CJ
T3

Zir ^~
*?

o
c
Jii

c3

C
<+-1

o c/2

c
O <1^

c3 o

o o
aj c
3
C/2

t: ^
It^ 33 ?3
c/2 e

3
O

Q ^x
O .b =2

O ^

w)
c

c
CJ

e
a^

o
3
c/:

c:)

c/^

C
CJ

c
o
’>

c
CJ

T3

CJ

.b2*5

cr
CJ

CJ

H

97

these

techniques.



Lessons

Learned

cd
Vh
o
c
o
O

o
>
00
C
0-)

C
• rH

c3

c3

W)
'O
o

o

S'
<D
>
<D

s
0
O
<D
X)
c/5

s
(D

c/5

C/5

(D
CU

1

o
o

4-(

O

o ^

c/5

<u

<D
c/5

<D

.h
D
cr
(D
Vh

bD

C
O
c/5

cd

o
•^
43
Oh
ed

W)
o
o
W)
Vh

t:
o
Oh
Oh
D
CO

98

to

analytic

operations.



Knowledge

Representation:

(D

(U

C/^

O 3
> o

• rH

0) rC
o

cx Vh
cd

3 (U
• rH

s hG
Vh

.a
o
G

c/3 c/2

(U
• rH

•

rG tP.

o • rH

Vh
(D 13

h4-^

g: Cd

a C
3

'Oh tn
o

s
G
;d

• •

c
o

c/2
• rH

t:
o
Oh
Oh
o
c/2

o
O
O
cd

c/2

O
c/2

13
>
o

c/2

C
O
cd
o

• ^
'Oh
Oh
cd

o
H—

>

c
o
c
o
Oh
<u

c

c/2

c
o

•

O

'Oh
Oh
cd

C
o
H-H

G
<U

C
(D
Oh
0)

(D o

c/2

O

f i

Cd
CJ
O
>

• • •

99

•

Objectness

helps

focus

vocabulary

development



General

Principles

(D

1 1 1 1 1

1-H (S cn
o

'H, [d- [a
O 'o '6 *6 'oc c c c c
•c •c •c u •c

0^ Ol^ Cu Oh

100



Geographic

Application

Principles

00

V
CO

cdw
C3
T3
T3

o
8.

X
<D

>%

a.

£
o
o
u
a
0
>
'B
C/D

1

'6

c
•c
Oh

C
<1^

c
o
o
TD

S •

5/5

P D
c ^
,0 C3

2 ’o

S
^ a
3 2O bO
>' o
•W D3 bO
E ^fv

o
a.
a,
3
V5

o
5/5
-w
c
<D

E w
p c
‘3 S

u (U

^ >
S5 o3 n3

= S'cb cb

>%
bO
O
"oa
o
U

00

C

E
E

• ^1^

3
CT

u
CO
3
T3
C
3

^ .

• - .22

"o ^
c c
x: ^
cj

o
04) ^C .S
S5 "O
CO CD C3

8 2
^S
o c
B =
D.’TD
cb c^ e3
OD
® s
1> o
W)’3

E 2
3 W)w (D
!3 '*—

•

o3 C
•^

2 <u

i .3 e s
a«
S 9.

D §
1

COu
CJ

The

kej

will

be

t

*c
® ‘xQ o

T3
C
D

1

CN
1

>0
<D H) o
d. 'a
o ‘3 ’6

CJc c c C
’C *C u •c
CL, CL CL CL

101

Principle

6
-

Cartography

may

be

art

but

you

still

need

it.



Selected

References

o
On

C
•

C/D

(U

Q
<D
bi)
c3
3
b^)

hJ
-o r^D 00
V5 -
cd
X)

I

<

<L) n.

Oo
u
o
c
bJ)

(U

0)

C/D

c
o
pH
C/D

c
O
a

X
(J

o
c/3

V
P<

C
O

• pH

• pH

G
:

^-H
(D

Q
• •

C/D

a>
CO

pO
cd

cd

Q
T3

CU
<D
OO

bb
c
W

Q
c
cd

(D
bfl

TJ
(D

O
c

c
o
c/3

G
cd
Vh

H
W
W

'X <DQ 0.

s

,

§ g S

t$*BS^ CJw o c
S’ ^ o
OQ^

C/D

4-h
• pH

c
cd

o
C/D

Cd
pO
cd

Q
T3 00
^ OO
G
<1^ X
'u ^
0 •

1
W

4i» (D

9 -
^ C
X^o
O G

• pH

eS<

TJ
D
G
<D

(D c
bO c3
TD
<U

'5

O

bX)

O

102



GIS/Object Technology Demonstration

Man Thom, Mike Morgan

Semantic Solutions, Inc.

8950 Villa La JoUa Drive, Suite 2200
La Jolla, California 92037

Presented at the NIST GIS Standards Laboratory Technology Integration Workshop, Gaithersburg,

Maryland, August 23-24, 1990.

Introduction

This paper is a description of the Geographic Information System/Object Object

Technology' Demonstration presented at the GIS Standards Laborator>’'s Technolog>'

Integration Workshop. The demonstration is an application of the geographic knowledge
structuring concepts presented in workshop's talk entitled, "Object-Oriented Database

Approaches in GIS." The demonstration is an adjunct to work performed for the National

Ocean Ser\'ice's (NOS) Nautical Charting Research and Development Laboratory

(NCRDL).

The demonstration depicts a computer mapping program developed to illustrate the utility of

maintaining multiple, object-oriented views of geographic space. The demonstration

focuses on a general spatial data model and its use in supporting the automatic generation of

nautical charts. Additionally, the program exemplifies data model suppon for interactive

applications and integration of related geographic information. The program also ser\'es as

a test-bed for experimenting with spatiS data management in an object-oriented

environment

The program was developed on a Sun Workstation using the X Window System and C-h-.

It uses a prototype 1:40,000 - 1:80,000 scale nautical feature data set obtained from
NCRDL. The area of coverage is a 1® x 1° block at the entrance to the Houston Ship

Channel in Galveston, Texas. The data set includes an extensive set of w'ater and ground

related features including channel segments, buoys, lights, piers, wrecks, shorelines,

roads, and railroads. In total, there are approximately 28,000 features.

Knowledge Representation

Geographic Knowledge Representation

The demonstration employs a novel (Morgan and Glick, 1988) representation for storage

and organization of geographic data. The data are organized into tw'o representations: static

and dynamic. The static representation maintains basic feature data. The dvTiamic

representation maintains more complex geographic information that is process oriented.

Both representations are briefly introduced below'.

7Tie Base Feature Hierarchy

The static representation of the geographic data, know'n as BaseFeature, is in some respects

similar to typical feature data sets, as it consists of elemental features. How'ever,

BaseFeature features are not organized into a flat representation, but into a hierarchy. The
leaves of the hierarchy correspond to the canonical data set. The leaves' parents represent

successive levels of geographic abstraction. For example, HardSurfaceRoad has Road as a

parent. Road has Transportation as a parent, and so on until the hierarchy's root
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AllFeatures. A class of features may have multiple parents, so BaseFeature is actually a

lattice, i.e. River has both Transportation and Hydrography as parents.

BaseFeature serves two purposes: organization and knowledge abstraction. An important

characteristic of the organization is that it allows the same data to be viewed in different

ways. Consider the queries "select all transportation features v^ith characteristic X" and
"select all hydrographic features with characteristic Y." Both queries may result in sets of

features that include rivers, but the perception of rivers is different in both cases. The
structure, via inheritance, supports factoring and reuse of common attributes and

functionality by allowing knowledge to be encoded at appropriate lattice levels. This

knowledge abstraction assists applications by permitting them to work at levels of

abstraction appropriate to their tasks.

The Geographic Phenomena Hierarchy

Geographic applications often require complex, process oriented, geographic information.

This information is often dynamic in nature and is generally not found in BaseFeature. The
structure that captures this information is known as GeographicPhenomena. Like

BaseFeature, GeographicPhenomena is organized as an inheritance lattice. The geographic

information it contains derives from three general classes: discrete, piecewise, and

continuous phenomena. The classes are then broken down as necessary. In the nautical

domain, one can imagine continuous classes like TideModel, Bathymetry, and Weather.

The class TideModel, for example, might provide methods for deriving tide surges. The
methods' results could be instances of a piecewise class TideSurge. More appropriate to

the nautical chart generation example, GeographicPhenomena contains the discrete and
piecewise continuous classes ShipChannel, ContinuousShoreline, Waterfront, and Harbor.

Instances (features) of these classes are linked to features in BaseFeature. The features

contained in GeographicPhenomena are more complex than those of BaseFeature.

BaseFeature contains channel segments, buoys, and lights, which compose ship channels,

but it does not contain ShipChannels which are particular combinations of these features.

Similarly, BaseFeature does not capture the notions ofWaterfront and ContinuousShoreline

that are required (along with ShipChannel) to define the feature Harbor. Often complex
features in GeographicPhenomena are composed of features from both

GeographicPhenomena and BaseFeature.

The advantages of GeographicPhenomena are similar to those of BaseFeature; it is

organizational and knowledge is strategically factored. More important, however, is that

by capturing and encapsulating complex geographic concepts and their operations, the

underlying data representation is elevated to a level approaching the application domain.

This simplifies processing of the data since it is possible to discuss, reason, and use the

concepts and features as entities.

Canographic Knowledge Representation

Cartographic knowledge, the information necessary to determine how to display

geographic information, is also viewed, at least for the purposes of this discussion, as a

hierarchy. In reality, the knowledge representation may take several forms: it may be

declarative, as in an expert system; procedural, as in features' operators; or a combination

of both. For the purpose this of demonstration, the cartographic information is

considerably simplified. It consists of a theme or essence of a nautical chart, feature

selection rules, and feature presentation rules.
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The Demonstration

The spatial data model briefly presented above is inherently object-oriented. It was natural

to use an object-oriented language to implement the demonstration as well as the object-

oriented data model to store the data. Other traditional data models, i.e. relational,

netvv’ork, etc., do not afford the necessary expressiveness to effectively implement the data

representation. The implementation language is C-h-.

The demonstration consists of three parts: a basic mapping capability, nautical chart

generation examples, and a data fusion example. Underhing this is a basic, persistent

object manager that manages access to the geographic data and a C-h- class that implements

the map. Feature access is accomplished using quad trees. There are approximately 56
thousand small (-400 - -2k bytes) objects stored in the database.

Basic Softcopv Suppon

The basic mapping capability allows viewing of BaseFeature elements by permitting

toggling of their classes. All data access and transformations are performed at runtime.

Suppon for panning and zooming of the map within a range of scales (1:1M - l.TOK) is

also provided. Feature attribute information may be obtained by selecting map features

with the mouse. The mapping capabilities, while elementary, demonstrate interaction with

the data representation in a softcopy environment.

Nautical Chan Generation

The nautical chan generation examples are the primary^ focus of the demonstration because
they illustrate interactions with and the utility of the spatial data representation. For

simplicity, the canographic process is limited to considering only simple feature

generalization as it applies to scale change. This also includes notions of feature selection

and symbolization. Future work will address more complex canographic processes.

The nautical chan demonstration consists of displaying a range of charts starting at a scale

of 1:250,000 and proceeding to 1:100,000, 1:50,000, 1:25,(^, and 1:15,000. Each chan
consists of all the features in the previous chans plus additional features. As the scale

changes from one chart to the next, the displayed representations of the features change to

suit the chan's scale and theme. Displayed features include those from both BaseFeature

and GeographicPhenomena. Those from GeographicPhenomena are most interesting

because they represent complex features canographers grapple with, such as

ShipChannels, ContinuousShorelines, Airpons, Waterfronts, and Harbors.

When a chan is generated, a display message is sent to the object that describes the chan
(this object specifies a chan's theme and scale). Subsequently, appropriate categories of

features are selected, sent display messages, and, if appropriate, displayed. Each
GeographicPhenomena feature determines its own representation based on chan scale and
theme. The canographic knowledge is encapsulated within the features. If display of a

feature is inappropriate, perhaps because the feature is more suited to a larger scale chan,

the feature is not displayed. For example, only major ShipChannels are displayed at the

1 :250,000 scale, and diey are represented on the chan by only their centerlines, even

though they consist of channel segments, buoys, and lights. At the 1:25,000 scale,

however, all ShipChannels are displayed, and they are represented by symbolized

representations of their channel segments, buoys, and li^ts. Imagine the difficulty of

automating the display of ship channels if solely their parts existed without any organizing

structure like ShipChannel.
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Extensibility and Data Fusion

Critical to remember is that while the demonstration focuses primarily on chart generation,

the data and the data model in particular are not limited to supporting this single application.

Charting is simply one perspective on the data. There are other applications that would use

the same data in completely different ways. For example, consider an application

supporting harbor management. It would use the same data, but for different puiposes:

buoy maintenance, channel dredging, etc. It would also require additional related data to be
integrated with the charting data. An additonal benefit of the object-oriented nature of the

spatial data model is that it simplifies the process of fusing collateral geographic data sets

with the existing data. The demonstration provides an illustrative example of this by
displaying a thematic representation of ship to pier capacities using some canned United

States of America Army Corps of Engineer data, which contains information on the number
of ships particular piers serve, fused with the NOS pier data.

Conclusion

The demonstration illustrates the powerful utility of an object-oriented spatial data model
that supports multiple views of geographic information. The data model consists of a static

and a d>Tiamic structure. The static structure BaseFeature captures basic geographic

features and their abstrations. The dynamic structure GeographicPhenomena captures

complex, process oriented, geographic information which does not exist in BaseFeature.

The demonstration provides sever^ examples of the application of the data model. The
primary emphasis of the demonstration is how the representation can be used to support

automatic generation of nautical charts. Additionally, examples of softcopy interactions

with the data representation and data fusion are shown.
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NOAA'S EXPERIENCE WITH OBJECT
programming DATA BASES AND EXPERT SYSTEMS

Dave Pendleton
, Artificial Intelligence Group
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National Oceanic and Atmospheric Administration

Rockville, Maiydand 20852

Introduction

The National Oceanic and Atmospheric Administration's (NOAA) Nautical

Charting Research and Development Laborator>' (NCRDL) has used object-

oriented programming/data bases since 1987 to explore the application of

artificial intelligence programming techniques, specifically expert systems,

to automated cartography. The NCRDL conducts research in cartography,

hydrography, and photogramme tr\' to support the Charting and Geodetic

Ser\tice (C&GS) national navigational chan production program.

The NCRDL, within the C&GS, is a component of the National Ocean
Serv’ice (NOS), the civilian agency which produces nautical chans for

navigation in U.S. coastal and estuarine waters, the Great Lakes, and the

Coastal Zone. It also produces the Nation's aeronautical navigational

charts, a wide range of geodetic data and services, and maintains the

national network of geodetic control monuments which defines the basic

geographic framework for all national mapping and charting activities.

Like many Federal and State agencies over the past 15 years, NOS has been

implementing automated charting and Geographic Information Systems

(GIS) wtith the goal of interactively producing multiple t>^pes of charts and

related products from a single scale- and product-independent data base of

chart feature data as depicted in Figure 1. The current major effort is to

implement a major chart production system using traditional tools and

techniques, and then augment the compilation w'orkstation tools with expert

system features and capabilities

This paper presents an overview’ of our efforts to adapt object-oriented and

expert systems techniques to the problems of automated cartography as

perceived by the NCRDL. The approach is intended to be at a tutorial

level w’ith an emphasis upon concepts, rather than details. A secondaiw’

goal is to present the material so that the discussion can apply to the

interests of a wider audience than digital cartographers.
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Digital and Hard Copy Products

Figure 1. NOS Chart Production

Like the history of the classical problem of automatic language translation,

significant automation of mapping and charting operations has proven to be

elusive and deceptively difficult. NOS has implemented advanced data

collection systems in the air and on the seas, but creation of the Nautical

Information Data Base and the Chart Production System to manipulate it

graphically and textually continues to be a long and difficult process.

Background

The NCRDL is turning to expert systems, object-oriented programming,

object-oriented data models, and related emerging technologies because the

use of traditional automation techniques has not been entirely successful in

meeting modem requirements of digital cartography and GIS. These

complex requirements, such as feature generalization when performing

automatic scale change, have proven to be limiting factors in achieving the

economic benefits promised by automated cartography.

NOAA is not alone in this regard. In fact, the entire Federal mapping and

charting community, including: the U.S. Geological Survey, the Defense

Mapping Agency, the Census Bureau, Environmental Protection Agency,

Federal Emergency Management Agency, Soil Conservation Service,

Bureau of Land Management, the Forest Service, and hundreds more
federal, state, and local agencies are also trying to overcome these same
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fundamental and quite difficult technical problems on the way to

modernizing their cartographic and GIS production systems.

To understand the reasons for the approach taken in NOAA's applications,

to be discussed both in this and other papers in these proceedings, one

should first have a basic understanding and appreciation of the fundamental

technical difficulties of automating chart compilation. Aside from the

major problem of creating and initializing the large cartographic data bases

involved, the most important technical difficulties fall within one or more
of the following categories:

(1) the automated placement of feature names and other text

labels without obscuring other labels or adjacent feature symbology;

(2) map generalization at change of scale involving feature

collapse and coalescence, with emphasis on primary' feature

characteristics using alternate symbolization, if necessary;

(3) the detection and resolution of conflicts between symbols

and/or text competing for the same physical area of the map; and

(4) decluttering operations on masses of data in a given area in

order to include features from overlapping areas at different scales.

These operations are further complicated by difficulties inherent in the

unorthordox nature of the chart feature data itself. Spatial data of this type

is composed of both graphical and nongraphical components, whereby a

feature, such as a road, has both a graphic depiction, involving the icons

used to symbolize it, together with associated attribute values, such as its

name, its material composition, its usage as a primary or secondary road,

and other "traditional" data fields.

The kinds of data manipulations required of such a system are very

involved. Fundamental to each, however, is the requirement to combine
this complex spatial data, which was collected by a variety of techniques at

different scales and resolutions, and match or combine it with data of

entirely different types within possibly overlapping and/or intersecting

spatial areas and have the resulting graphic depictions be correct. In this

case "correct " means, in addition to the usual desire for correct numerical

attribute values, that the displayed compilation places emphasis on those

features requiring emphasis and suppresses or eliminates others while

maintaining the esthetic effects achieved by traditional cartographic
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methods. Of course, the compiled depiction can change entirely as the

scale for the same geographic area changes.

To illustrate the difficulties listed above
, the section of a NOAA nautical

chart shown as Figure 2 is a t>^ical example of the cartographic depiction

problem. This chart contains an inset or portion of the main chart

enlarged to a more detailed scale, in this case 1 to 10,000 from 1 to 25,000.

Without going into detail as to the exact meaning of all the symbols shown,

the dashed lines are ship channels, the sounding numbers denote water

depth in feet, and one can see piers, pilings, ship wrecks, and buoys.

The point to notice is that the geographical area on the main chart does not

show the same level of detail as that shown in the inset, even though the

data is present in the data base. What is not so apparent are the additional

features, also in the data base, that are not shown, even at the 1:10,000

scale. If all available sounding data were displayed, for example, the entire

water area would appear as a single black mass, obscuring all other

features as well as the individual sounding values themselves. The text for

labels is carefully placed so as to not impact the feature icons while, at the

same time, positioned so as to intuitively indicate what is being labeled

(note the curved "Windmill Pt").

The main chart is a generalization of the area of the inset with an

approximation made to the shape of the water line and, except for the

channels, most other features in the data base are not shown at all at that

scale. In order to construct the inset, the system must change the scale and

know which features show up at the new scale, their type and size of icons,

their geographic locations, which features to omit in case they conflict

(overlay or intersect) with more important icons, and how to place the text

such that no features or other text is obstructed.

To be useful in a high-volume production system, the generalization

operation, for example, must be performed on a network of graphics

workstations from a single scale and chart independent feature data base.

Because of the possibility of chart overlaps in common geographical areas,

it is unacceptable to allow the system to maintain and access a separate data

base for each chart to be produced. This is one of the fundamental

constraints placed upon the design of modem digital cartographic systems.
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Figure 2. Example Portion of A NOAA Nautical Chart



It is important to realize that these chart depictions, called "compilations,”

are maintained accurate to scale so that distance measurements can be taken

directly from the chart by the mariner. Accordingly, precise geographic

positions and the spatial relationships of features for a given area and scale

must be maintained. Thus, in constructing the depiction, lateral movement
of the icons for critical features, such as ship wrecks, rocks, pilings, and

other potential hazards to safe navigation, is not allowed. In some cases,

e.g. ship wrecks in close proximity, icons may be rotated in relationship to

one another in order to resolve the conflict at a given scale, but they cannot

be otherwise moved. As a last resort, alternate icons can be selected or the

entire compilation can be depicted in a different way to convey the same
information to the mariner.

Objectives

The NCRDL's Artificial Intelligence Group was formed to explore,

develop prototypes, and evaluate solutions to these difficult technical

problems using emerging automation techniques such as expert systems,

object-oriented programming languages, object data bases, GIS, and related

technologies. The long-range objective is to provide software tools that

can be embedded into the latest version of the agency’s ANCS II

(Automated Nautical Charting System, Version 2), which will be the new
system used to ascession, maintain, and manipuate figure I's Nautical

Information Data Base [3].

By embedding expert systems into ANCS 11, we hope to break through

conventional technology’s technical barriers and apply these emerging

techniques to enhance the system’s capabilities to automate specific chart

compilation functions. This concept is depicted in figure 3, in which a

knowledge base of highly structured expert system rules is accessed by a set

of expert system tools being driven by the processing of a conventional

data base of nautical chart feature information.

The expert system tools consist largely of: (1) a rule interpreter module,

commonly called an inference engine in expert systems parlance, (2) a data

base of rules called an knowledge base, and (3) a graphical user interface

consisting of windows, pop-up menus, etc., all accessable via a mouse and

keyboard.
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Figure 3. Concept of Enhanced Charting System

Technical Approach

It was clear from the beginning that the traditional approach to system

development using the specification-design-code-debug sequence would not

be appropriate for the knowledge-based system. The approach selected was

to develop and evaluate separate prototypes of each major kind of chart

depiction problem, as previously discussed above, and then integrate them

under a unified design once the details were knowm.

The development of each prototype was sequenced through the major

phases of problem definition, enabling technology evaluation and selection,

test-bed facility enhancement, software development, and iterative

refmement through all these steps until a working prototype resulted. This

flexible approach has proven quite successful and resulted in a series of

w'orking prototype knowdedge-based systems. A major outcome of this

open design approach was the identification and application of three distinct

kinds of enabling techniques and their integration under a unified design.

This concept is depicted in figure 4.
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Figure 4. Integrating Three Leading-Edge Technologies

Previously, artificial intelligence/expert systems, object-oriented

programming/data models, and geographic information systems were new
and distinct fields. Not only are they distinct but, like the field of

automated cartography, each is still in the process of emergence from the

laboratory and gaining maturity in the real world. This pioneering work
at NOAA has demonstrated that such techniques can be integrated to

provide a powerful new paradigm for solving highly complex spatial data

processing problems that are very difficult to -approach in other ways.

The Prototypes

Table 1 summarizes the results of this effort in terms of the prototypes

developed at the NCRDL for specific chart compilation problems.
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Prototype Problem Area Primary Result

1986 Shipwreck Proof-of-Concept Evaluation-Application
Chart Compilation Model

1987 Object Data

Mcxlel

Knowledge & Data
Representation,
Spatial Data Mgt

Spatial Object Data Model;
Object DBMS Experience.

1988 Interactive

Expert Edit-

ing System

Text Placement
Conflict Detection

and Resolution

Point Feature Labeling;

Constraint-based Search

and Inference.

1988 CartoAdvisor Knowledge Base Knowledge Base Tool;

Expert Sysem Shell.

1989 KB-GIS
Phase I

Scale Change.
Generali zati on.

Spatial Data Mgt

GIS Capabilities;

Generalization;
Feature Collapse;

Feature Coalescence;
Feature Symbolization.

1990 Carto-

Associate
Integrated Object-

Oriented Design
Composite Objects;

Expert System/GIS;
Spatial Object Data Model;
Conflict Detection and
Resolution;

Scale Change and
Generalization;

Text Placement.

Table 1. Evolution Of NOAA's Cartographic Prototypes.

The Shipwreck Prototype was the first proof-of-concept demonstration

which explored the potential of expert systems techniques to problems of

chart compilation. It was written in the logic programming language

Prolog and, for feasibility, focused upon symbol selection and limited

conflict resolution for a single NOAA chart feature, the ship wreck [1].

The Object Data Model prototyped NOAA charts and their features as

objects with behavior. This work was programmed in Smalltalk-80 object

programming language (Xerox, Inc.) and used the GemStone (Servio

Logic, Inc.) object data base management system (refer to the paper by

Williams in these proceedings) [5,7].

The Interactive Expert Editing System explored the problems of

automated text placement on NOAA's charts. The problem was limited to

placing text for point features appearing on NOAA nautical charts, such as

115



buoys. It was written in the C systems programming language and used the

InforMap m (Synercom, Inc.) GIS [2].

The CartoAdvisor Prototype was an extension of the shipwreck
prototype which was completely rewritten using the LISP-based expert

system shell Personal Consultant Plus (Texas Instruments, Inc.). The
Shipwreck's small knowledge base was extended and powerful graphics

capabilities were added. It has evolved into a tool for creating and

debugging knowledge bases for individual chart features [1,4].

The KB-GIS (Knowledge-Based Geographical Information
System) Phase I Prototype applied object-oriented GIS-type operations

to scale change and generalization problems and proved the benefits of

exploiting multiple views of geographic space and higher-level geographic

entity/GIS concepts. It was written in the C++ object-oriented language

and used the X-Window System (MIT), the Interviews object-oriented user

interface (Stanford University), and an object-oriented Mapping/GIS shell

(Semantic Solutions, Inc.). A Phase II KB-GIS project to extend and

complete this woiic is planned for 1991-1992 [8].

The CartoAssociate Prototype began as an extension of the object data

model prototype and evolved into a platform on which the results of all

previous prototypes will be combined under a coherent, integrated design.

It is written in Smalltalk-80 and uses the Analyst user interface

(Xerox,Inc.), the Humble expert system shell (Xerox, Inc.), as well as the

GemStone object DBMS (Servio Logic, Inc.). The CartoAssociate will

serve as an automated chart compilation test bed for exploring advanced

solutions to the problems of conflict detection and resolution, feature

evaluation and symbolization, scale change and generalization, and text

placement. It will become the foundation for developing, testing, and

migrating a family of expert system/object-oriented/GIS tools onto C&GS's
new automated nautical chart production system as it comes on-line

[2,3,4,5,6,7,81.

The Experimental Cartographic Facility

The series of prototypes discussed above were developed on NCRDL's
hardware/software test-bed platform called the Experimental Cartographic

Facility (ECF). This is a networked configuration of engineering

workstations, personal computers, and peripherals, such as plotters and

printers, that evolved along with the series of prototypes discussed above.

The layout is as shown in figure 5 below, with the DEC VaxStationll/GPS

serving as the network host and data/object server.
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MSDOS
PCPIus

Scheme

Smalltalk

Pascal

Emacs

Experimental Cartographic Facility

Compaq 386-a-n
Tektronix

Graphics Workstations

MicroVax II

Network Host

Tek4315 Tek4317

C, Unix, X-Windows, Smalltalk

Lisp, Prolog, Analyst, Humble

Emacs,etc.

Macintosh llfx

C++, A/UX, Multifinder,

Smalltalk

Lisp, Analyst,

Humble, MacSmarts
Laser Printer

PostScript

Gemstone DBMS
InforMap ill GIS

Ethernet

Wollongong,etc.

Calcomp
1043 Plotter

Figure 5. Hardware/Software Test-Bed For Object-

Oriented Cartographic Expert Systems

Prototype Development.

As the ECF evolved, it became a unique open architecture facility for

developing cartographic/GIS prototypes involving knowledge-bases, expert

systems, and object-oriented programming/data management. It has a full

complement of artificial intelligence languages, several expert systems

shells, the leading object-oriented languages, and an advanced object-

oriented data base management system. The workstations are UNIX based

with 19 inch high-resolution color screens. The Macintosh and Compaq
personal computers also are equipped with 19 inch color screens. The
network host will be upgraded to a Sun SparcStation 2 in the near future.
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Object-Oriented Programming And Expert Systems Concepts

The work-in-progress demonstrations given at the NIST Workshop reflects

the present status of our current projects, the CartoAssociate and the KB-
GIS. However, in order to gain a perspective on the spatial application of

the powerful programming techniques used in their development, it is first

necessary to have some understanding and appreciation of the concepts of

modeling with object classes, class inheritance, and the expert systems ideas

of rule-based inference and model-based reasoning.

Modeling With Classes. Almost every problem-solving approach can

be guided and enhanced by the use of some kind of abstract model. A
model is a simplified view of the structure and primary characteristics of

the real-word entities comprising a problem to be solved. The use of a

model permits de-emphasis of secondary issues and retains a focus upon the

critical elements. It also provides context information for making valid

inferences of secondary facts when they are needed, without having to

retain and maintain volumes of details about the entities and their

relationships. With origins in the field of simulation, object-oriented

languages, such as Smalltalk-80, and object data base management systems

have built-in facilities for constructing, manipulating, and interrogating

complex models of the entities comprising a problem.

Figure 6 illustrates how the key characteristics of entities and their

relationships can be captured as class and subclass definitions in an object-

oriented language. Moreover, because these, classes are defined as data

types in the object program, they become templates for instances (records)

and their instance variables (data fields). They also define the valid

operations that may be performed on the problem's data types through the

class and instance methods (program code) they encapsulate. In Smalltalk,

for example, these user-defined data types are complete extensions to the

programming language and are just as valid as the built-in types such as

"integer,” "floating point," and "character."
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Modeling With Classes

Class Definitions Capture The Key Characteristics Of A Problem

Animal

Mammal
Herbivore

Figure 6. Capturing The Structure Of Entities With Classes

The key concept to realize about figure 6 is that the subclasses of parent

classes, e.g., "Animal ->Bird ->Seagull,'’ denotes one superclass-subclass

hierarchy chain, where the subclasses include only those characteristics

different from the parent class. All other subclass characteristics are

inherited from the parent class and are known throughout the

programming system as such. This facility makes it easy to add

refinements to the model in order to construct as detailed and complex a

model as required for the problem. This is further illustrated in figure 7

in which a new data type called WhiteTiger has been defined. WhiteTiger

automatically inherits all the characteristics (i.e., methods and instance
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Figure 7. Automatic Inheritance Of Data and Methods

variables) of its parent classes. This facility greatly simplifies the

definition and maintenance of complex hierarchies of classes and subclasses

with all housekeeping performed transparently by the programming system

as, for example, in the case of Smalltalk-80.

The object-oriented programming techniques discussed thus far serve

primarily to off-load the programmer from the need to constantly think in

terms of the details of the problem; it allows software development to be

performed using the model's high-level objects, independent of their

implementation details, and the messages they respond to. All processing,

or object behavior, occurs when an instance of an object receives a message

(roughly analagous to a subroutine call) and takes some action. This action
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Inferencing From Rules

Inference Process:

X Y "If X is true, then Y is also true"

"Given (from data base) that X is true"X

Conclude:FI
"Therefore, proceed as if Y is true"

Figure 8. Typical Inference Engine Process

can be the requested processing, or it can also result in other message sends

to other objects in the system.

Rule-Based Inference. Rule-based inference extends the notion of

high-level implementation one step further. It introduces ways to extend

object behavior beyond the usual deterministic procedural computational

methods programmed as fixed algorithms. Rule-based inference extends

into each object’s behavior open-ended noncomputational methods
involving searching for a solution in a problem space. The advantage of

this approach is that knowledge of a given problem domain can be

expressed in very high level terms using ”if—then” rules. This turns out to

be quite similar to the ways people summarize rules of thumb about how to

proceed to solve specific "common sense” problems without resorting to

the details involved. Figure 8 illustrates the most common inference

technique used in expert systems known as modus ponens from symbolic

logic. The technique is deceptively simple, but powerful when combined

with a large knowledge base of rules of the form shown in figure 9.
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Example Of A Typical Knowledge Base Rule:

HUMIDITY > 95% and TEMP < 32F

THEN Conclusion is: "Snow Is Likely”

Figure 9. Capturing High-Level Knowledge As Rules

Such simple "If—Then” representations are adequate to capture the surface

structure knowledge of a problem domain. Combined with other high-

level representations, such as heuristics shown in figure 10, it is possible

for a generalized program called an inference engine to chain through

large sets of such rules as shown in figure 11, and reach conclusions not

explicitly stored in the system, i.e., data base and knowledge base. The
inference engine uses domain specific heuristics to reduce the scope of

search, i.e., the number of rules that must be processed, to select the most
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Heuristics Guide Inference

Algorithm: x = v tcosO

y = Vq t sinO - 9^

Or

V
2 V sin A

0 S
9

Heuristic: "What Goes Up

Soon Comes Down"

>

Figure 10. High-Level Heuristics Capture Knowledge.

Figure 11. Program Flow Determined Through

Inferences.
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appropriate kind of search under the circumstances, or to increase the

speed of the symbolic processing required to complete the reasoning

chain and reach the final conclusions in minimum time.

Model-Based Reasoning. "If—Then" rules are extensively used in

simple expert systems and have proven very effective in several problem

domains where exclusive use of simple surface knowledge is adequate.

However, the shallow knowledge captured in rules provides only a limited

reasoning capability adequate to solve just the easiest problems.

For more complex tasks, those customarily thought of as requiring some
understanding of the nature of the problem domain, the encoding of some
amount of deep knowledge is necessary. As it turns out, object-oriented

techniques are also quite appropriate for deep knowledge representation, as

well as providing the high-level programming advantages already

discussed.

Thus, an appropriate class and subclass hierarchy can be thought of as

implicitly including a limited amount of deep knowledge structure of the

problem domain being modeled, as illustrated in figure 12. This meta-

knowledge about the class hierarchy itself, when coupled with the rule-

based inference techniques discussed above and extended with recursive

polymorphic messages to be introduced later, produces an very powerful

programming methodology. This approach is appropriate for attacking

complex problems having many more possibilities to consider than can be

programmed in advance into a fixed algorithm using conventional

techniques, such as those in nautical chart compilation. Although highly

simplified for this discussion, the structure of the problem is similar to a

family of communicating expert systems implemented as a set of

cooperating objects, each covering the details of its problem area domain

and each accessing sets of rules about its domain in the knowledge base.
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Figure 12. Model Establishes Context Information.

The heart of this new ability to attack problems of high complexity is the

dynamic flow of program control, as already shown in figure 11, using

model-based reasoning. The flow of processing, usually explicitly

controlled by the programmer's design under conventional techniques, is

determined dynamically during exection by the particular sequence of

inferences reached. The next rule to be examined is determined almost

entirely by the results of the previous inference and the constraints placed

on the solution by the model.
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Each path through the search space represents a set of possibilities to be

examined and is different for ever\' unique situation. The total of a

problem solution is represented by the path of all possibilities through the

search space. The search space has so many possibilities, in a difficult

problem, as to make it virtually impossible to pre-program each one in

advance, as would be required using fixed algorithms and conventional

programming techniques.

Furthermore, the use of object-oriented techniques makes it possible to

embed the symbolic reasoning capability of expert systems into some or all

parts of the model, giving the effects of multiple expert systems, each

handling a specific part of the model and returning its results to the others,

as appropriate. NOAA's Chart Compilation Model, to be discussed in

detail in another paper in these proceedings, operates in this manner .

Recursive Polymorphism. This fancy term denotes a closely related

concept to model-based reasoning which is a marriage of the two
techniques: (1) recursive procedures, or routines that repeatedly activate

themselves, and (2) polymorphism, or multiple responses by objects in

different classes (data types) to the same message.

NOAA’s model-based processing for chart compilation depends upon the

ability of the system to automatically send identical messages to different

parts of the model and have each respond in a manner appropriate to its

class of objects. Moreover, the processing initiated is recursive in that a

composite object, i.e., one composed of nested lower-level objects,

automatically performs the processing operation on itself and any and all

lower-level objects that it may contain. This type of processing is the key

to designing and implementing such complex software systems as GIS.

For example, a shipping channel may be requested to position itself on a

chart according to ^e rules in the knowledge base about channels. In

order to accomplish this task, the channel relays the same message to all of

its channel segments who, in turn, relay the message to their buoys, lights,

soundings, hazzards, and accompanying text. These lowest-level entities

perform their individual processing, as appropriate to their context, and

return the results up the recursive chain of control until all processing is

completed and the channel is properly positioned on the chart.

The Embedded Expert System Concept. The traditional view of an

expert system is one in which a user consults the system through a terminal

or personal computer for advice. Classical expert systems are designed to

ask the user to respond to a sequence of questions. Then the system chains
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through its knowledge base to infer one or more conclusions about the

problem domain, given the rule parameter values entered.

This form of system provides expert level advice to a person who then uses

the provided information to carry out some remaining sequence of actions

manually. In this case, the user is quite aware that an expert system is

being consulted and that subsequent actions to be taken are based upon the

advice from such a system. It is likely that complete use of the system

requires specialized training on selected details of how the inferencing is

done, or the structure and content of the rules in the knowledge base. The
more advanced systems may even query an internal or remote data base for

parameter values, rather than request that all values be entered by the user.

An embedded expert system carries this idea a step farther. Instead of

requiring the user to provide detailed parameter values and subsequently

carry out further steps to complete an activity, the expert system returns its

results to a higher level conventional program, for example, which

completes the activity in a conventional manner. This concept is illustrated

in figure 13. The person is using a workstation which, for particular

situations, consults one or more embedded expert system modules and then

uses the answers it receives to complete normal processing.
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In this case, the user does not have to be aware that an expert system is

involved; the only skills needed are how to initiate the workstation's

activities and how to use the facilities provided to get the work done. Tliis

implies that the user in not required to be specially trained or skilled in

using expert systems, knowledge bases, inference engines, etc., per se\ the

user only has to be able to operate the workstation and use its functions as

tools to carry out expected w ork tasks. These are the kinds of expert

systems we are speaking of when we refer to enhancing a primary system

with embedded expert system tools.

The CartoAssociate Prototype.

The CartoAssociate prototype is an attempt to combine the results of the

prototypes listed in Table 1 under a coherent and integrated design. Its

components include: (1) the hierarchial object model system design; (2)

the general chart compilation model (CCM); (3) the spatial object data

model; (4) the knowledge base; and (5) the feature data base. Although
space does not permit an in-depth technical discussion, an overview of these

key ideas and their enabling technologies can be briefly described.

The Hierarchial Object Model System Design. The fundamental

principle for the overall design is maximum exploitation of the object-

oriented paradigm using object class hierarchies enhanced with intelligent

behaviors at all levels. This means that each component is an object with

its own set of intelligent behaviors as supplied by an expert system object

and knowledge base object. The collective behavior of all objects

represents the total processing required to compile NOAA nautical charts.

The fundamental design principle: As depicted in figure 14, chart

compilation processing is initiated when the cartographer sends a message

to a specific NOAA chart to compile itself. The chart is an intelligent

object with the behavior of compiling its representation from the current

version of the chart feature data base when requested to do so. That is, it

knows how to detect and resolve feature conflicts, change scale and

generalize features, choose correct symbols, and correctly place text

according to chart-level rules in the knowledge base. The chart object

accomplishes this by sending polymorphic messages recursively down the

data structure hierarchy to those subordinate features in the object data

base affected by the compilation. They are instructed to place themselves

properly without conflicts, etc., according to their rules in the knowledge

base. They, in turn, relay corresponding messages to their subordinate
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features. This recursive message sending continues until the bottom of the

hierarchy is reached and processing is completed.

Some features will be composite features, that is, features made up of other

composite and simple features, and so on, until the lowest level primitive

features process themselves. As previously discussed, for example, a ship

channel is a typical composite feature. The channels are composed of

channel segments, each of which is further composed of defining features

such as buoys, lights, signals, and depth curves. Channel segments also

contain other simple features within its geographical space, such as critical

soundings and individual wrecks, rocks, pilings, pipes, cables, and other

hazards.
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Hierarchial Object Model Design

Chart
Object

Fundamental Principle:

Intelligent Features

"Portray" Themselves

Class Definitions

Define Characteristics

of Chart Object Types

All Objects Access

The Expert System

By Inheritance

^ Expert System Object^

Chart-Level Rules

Composite Object Rules

Knowledge Base

Model Structure

Lower-Level Classes

Inherit Characteristics

of Higher-Level Classes,

In Addition ToTheir Own

Channel Object

Feature Object Rules

Feature ClassrNavaid

Figure 14. Processing By Recursive Polymorphic Messages
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The net effect of this model-based system recursively propagating messages

down its hierarchy results in each chart, composite feature, and simple

feature behaving as a family of coupled embedded expert systems, each

contributing to the solution of the overall problem at its own level of detail

to produce the final result, i.e., the correct compilation of a particular

NOAA navigational chart.

The General Chart Compilation Model

Figure 15 is a view of the General Chart Compilation Model’s structure. It

illustrates the recursive descent message passing for evaluation processing

which is the first step in the model's operation. Evaluation processing is

the pass in which features of the same type attempt to depict themselves

without regard to their proximity to other types of features. The
specification contains information on the details of the particular chart’s

data contents: scale, geographic coverage, and other chart specific details.

Tlie skeleton contains nonfeature information appearing on the chart, such

as compass roses and textual annotations. The data base root node is the

entry point into the Spatial Object Data Model's feature object compilation

data structure. This structure contains features in object form to be

depicted on the chart, or ones that may have an effect on the compilation

processing in some other as yet unanticipated (to the evaluation processing

step) manner. The virtual chart root node is the entry point into the data

structure which will hold the results of step 1 evaluation processing.

The results of step 1 is a tree data structure called a preliminary Virtual

Chart whose leaves are Symbology Objects corresponding to the chart’s

features as found in the spatial object data base. The correspondence is not

necessarily one-to-one, however, as some feature objects may be combined

into a single symbology object, as in the case of feature coalescence upon

changing scale, e.g., a group of buildings may be combined into a single

symbol when moving to a smaller scale (larger area). Symbology objects

also have access to the inference engine and knowledge base and, therefore,

implement intelligent behaviors required for the next processing step.

Figure 16 continues the simplified view of the structure of the general

Chart Compilation Model. It illustrates the recursive ascent (i.e., the

unwinding of the recursion) message passing for application processing,

which is the second step in the model’s operation. In this pass, the

symbology objects generated in step 1, whose tree data structure is pointed

to by the virtual chart root node, attempt to finalize their depiction while

considering their proximity to other nearby features of different types
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which may possibly be in conflict, or whose presence may influence the

choice of final symbology at the scale being used.

Upon completion of step 2's application processing, the result is a

completed virtual chart with scale changed, features generalized, conflicts

resolved, symbols selected, and text placed. This virtual chart, however, is

not simply a graphic file, but an intelligent object with its own set of

behaviors. It is a tree data structure populated by finalized symbology
objects which becomes "real" when sent a message by the cartographer to

present itself as a screen display or final plot. Only at that time does the

virtual chart transform itself from an abstract data structure to assume a

concrete, physical form.

More detailed discussion of the compilation model is too involved for the

purpose of this paper. Suffice it to say that the GCM can be decomposed
into the following parts: (1) the GIS scale change/generalization model
(GSC/G) (refer to the paper by Thom and Morgan in this proceedings);

(2) the conflict detection/resolution (CD/R) model; (3) the text

placement/labeling model (TP/L); and (4) the decluttering/sounding

selection model (D/SS). The CD/R and TP/L are being developed in-house

and the GSC/G and D/SS are being developed under contract.
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Figure 15. The Compilation Model's Evaluation Processing
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The Spatial Object Data Model.

Figure 17 illustrates the concept of the Spatial Object Data Model which

was developed to support the Chart Compilation Model’s detailed

processing just described. This new data model combines the virtues of

traditional cartographic-spatial models with those of the emerging object-

entity data models. This new’ model w'as developed to overcome the serious

limitations of the earlier models used in GIS and automated cartography.

The most serious of these limitations is the inability of existing data models

to capture the "is composed of relationship of compound features, as

outlined above by the shipping channels on NOAA's nautical charts. The

popular relational models depend upon data normalization, or the

elimination of redundant data fields, in the various tables (relations) used to

store specific kinds of data. This normalization operation, while necessary

for the relational model’s referential integrity and highly efficient for

simple data files, effectively removes all the "intelligent" relationships

required for processing compound spatial feature data.

The subsequent retrieval of relational data requires that these semantic

relationships first be restored. This is accomplished by multiple "joins" of

all required relations using foreign keys (a single field common to both

tables) as links. This, in turn, requires that long sequences of SQL
(Structured Query Language) commands be written by the system user, or

generated by very complex internal software, in order to define the

specific joins required. This additionally assumes that all the joins to be

needed for future processing can be anticipated in advance and coded into

the system. In either case, the retrieval operation, which may require tens

or even hundreds of joins of separate tables to restore a single highly

complex nested feature, exacts a very large processing overhead and,

correspondingly, imposes long response penalites on the system.

By contrast, the object data model organizes and stores data entities directly

by name and retains their internal semantic relationships as described to

them by the designer, with pointers into the various subunits that make up
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Spatial Object Data Model

Spatially Indexed Data Base Objects
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Figure 17. Example Object Data Model Tile Tree
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any compound entiries. Thus, the object data base system can quickly

identify and reference a data object and all its subobjects without the need

to perform lengthy intermediate restorative operations for internal

semantic relationships. Thus spatial version of the object data model goes

even further to provide a way of representing the complex spatial

relationships required of GIS systems.

This unique data model improves upon a spatial data base s ability to retain

and represent, in a software sense, both the complex spatial relationships

and the compound feature relationships required for this special type of

data processing. To our knowledge, this is the first time such object data

base techniques have been considered and applied in this manner to GIS
spatial data base support

The Spatial Object Data Model has two primary components: (1) a set of

tiles defined as data base objects, and (2) a tree data structure for each tile

populated with the data base feature objects corresponding to the available

chart feature data for the geographic area of the tile. The complete set of

tiles constitutes the feature data for the geographic area of the data base.

Each tile's object name (entities in object data bases are stored and

referenced only by their object names) is generated by a variable resolution

quad-tree indexing scheme based upon the data density^ and the latitude-

longitude area the tile covers. Thus, the individual tile entities are related

to one another and assume spatial significance due to the method used to

calcualte their data base identifiers, i.e., their names. Every tile in the set

is linked to its four neighbors by pointers, thereby enabling spatial

references- into the data base for any data base query to quickly reach all

tiles covering the geographic area of any given feature.

The tree structure for each tile is accessed through that tile's data base root

node. By following the pointers through the tree, the system can reach the

nodes, which are individual instances of data base feature objects.

Significantly, even in the data base, the chart features have the same set of

intelligent object behaviors as they do when used at the workstation. Thus,

it is possible to trigger a significant amount of processing in the data base

itself

,

not limiting the system to the usual simple data base queries for data

retrieval. Thus, results of intelligent processing, rather than large volume

data retrievals, are transmitted over the network to the workstations,

thereby minimizing network traffic and lowering bandwidth requirements.
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The Knowledge Base and Intelligent Objects

The Knowledge Base is the collection of "if—then"style rules applied by the

feature and symbology objects by way of the expert systems's inference

engine to effect intellegent processing. Rather than one very large set of

rules, expert systems usually organize rules into a hierarchy of subsets

called "frames" which are in some correspondence to the structure of the

problems being solved.

For example, if the knowledge base is one about diagnosing the failure of,

say, an automobile engine, there will be a top level engine frame (set of

rules for overall engine characteristics). Below that, there will be frames

for the electrical system, the fuel system, the steering system, and the

transmission and drive system. In this manner, not all knowledge base

rules will be searched each time the inference engine is activated. Only the

rules in the applicable frames will be searched, making for more efficient

and timely processing.

The CartoAssociate's knowledge base is decomposed into frame-like object

classes which parallel the structure hierarchy of the families of features

found on NOAA’s nautical charts. These rule classes, depicted in

simplified form in figure 18 , like all objects in the system, can inherit

more general rules from their super classes, thereby effecting considerable

compaction of the knowledge base, since rules that apply to more than one

feature are not duplicated.

The more general rules are found near the top of the hierarchy and highly

specific rules are found at the bottom of the hierarchy. In this manner, any

feature or symbology object has direct access to general or highly specific

rules that are appropriate for resolving evalutaion-compilation problems

about chart features in its class (e.g., two ship wrecks in conflict) or for
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Figure 18 . Nautical Feature/Knowledge Base Class Hierarchy
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application-compilation problems about chart features between classes

(e.g., a ship wreck, a buoy, and a sounding in conflict). The more general

rule classes at the top of the hierarchy apply to chart-level processing, and

serve as a check that the results produced by lower-level processing remain

appropriate at the overall chart level.

Notice in figure 18 that "NavAids” appears twice, once under "Navigation"

and again under "Channel — Segment." This is a form of inheritance

known as "multiple inheritance" in which a subclass inherits characteristics

from two or more parent classes. In this case, navigational aids which are

part of a compound object "channel - segment" also inherit all the general

characteristics of isolated navaids as well as characteristics unique to those

which define a channel segment’s boundary.

Intelligent Objects

To complete this overview of the CartoAssociate, figure 19 depicts the

technique used to implement intelligent behavior among the systems’s chart

feature and symbology objects which was alluded to in figure 14. Chart

features, being in object form, are of two parts:

(1) encapsulated data - the values of the instance variables, and

(2) methods - the program code available to the object to manipulate

its data fields (instance variables).

The data is considered to "encapsulated" because it is isolated from

manipulations by other system objects; only the object’s own methods can

access it. The methods are Smalltalk-80 program statements which cause

all of the object’s processing to occur. They consist of references to

instance variables and even send messages to other objects to obtain values

used in subsequent processing.

Consequently, when the flow of control reaches a Smalltalk-80 statement

which queries the expert system object, a message send to the inference
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Figure 19. Adding Intelligence To Objects

Incoming Message "Position Yourself

Without Conflict"

Returned Value = Feature Correctly

Positioned On Virtual Chart

Chart Features Become A Family Of ’’mini'’ Expert Systems Working In

Concert To Achieve Intelligent Behaviors For Conflict Detection/Resolution, etc.
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engine object occurs and the method waits for the value returned from the

send. No distinction is made between a message send to the inference

engine and one to any other object in the system. The intelligent behavior

occurs because the value returned from the inference engine call is one

which has been deduced via symbolic computation, i.e., chaining through

the knowledge base. When this result is returned to the method, it resumes

normal flow of control until the routine exits and returns to its caller.

In this manner, every feature in the data base has access to the expert

system and becomes, in effect, a miniture specialized expert system for its

own set of functions. In addition, this family of expert systems works in

cooperation to achieve the total set of effects required to solve the chart

compilation problem.

Summary and Conclusions

This tutorial paper has presented an overview of NOAA's expert system

prototype for compiling nautical navigational charts, the CartoAssociate.

An introductory discussion summarized chart compilation problem
fundamentals as well as object-oriented and expert systems concepts used in

the prototype’s implementation. The prototype’s overall design was
discussed in terms of its intelligent object hierarchy, compilation and

spatial object data models, knowledge base/feature data base structure, and

the techniques used to add intelligence to NOAA's chart feature objects.

The results to date indicate that the design and implementation strategies

work, as evidenced by the live demonstration provided at this Workshop.

Much remains to be done, including volume testing of the object data base

and expansion of the knowledge base. The question remains as to whether

the prototype will scale-up performance-wise when large volumes of data

and the full complement of chart feature types are included. Shifting more

processing into the GemStone object data base may also be another option.

We feel that the validity of the approach of integrating GIS techniques and

an expert system with an object-oriented platform (programming
environment, language, and data base) to solve heretofore intractable chart

compilation problems has been proven. In a wider context, this work

demonstrates that the path toward finished graphic depictions from spatial

GIS queries lies in the object-oriented language/data base and expert

systems arena.
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